
www.manaraa.com

D*: A Data Storage and Retrieval System for Scientific Studies

Ratko Orlandic

Department of Computer Science
University of Illinois at Springfield
One University Plaza, UHB 3100

Springfield, IL 62703, USA
rorla2@uis.edu

Sachin Kulkarni

Department of Computer Science
Illinois Institute of Technology
10 West 31st Street, SB 236

Chicago, IL 60616, USA
kulksac@iit.edu

Abstract

D* is a novel system for data storage and retrieval appropriate for advanced scien-
tific studies, as in high-energy physics, environmental sciences, and astronomy.
The design of the D* system is based on certain principles of organizing and ac-
cessing multi-dimensional data on storage, whose pursuit requires that the storage
system acquire a greater knowledge about the data. This provides a basis for a
tighter integration of data storage and data mining technologies. Through the ap-
plication of innovative retrieval and clustering techniques for high-dimensional
data, D* can support high-performance data access and provide data mining ap-
plications useful insights into the data that can facilitate subsequent processes of
data preparation and data mining. The basic processes of the D* system include
data clustering, space partitioning, data loading, and data retrieval based on region
queries and similarity searching. D* scales well with increasing data dimensional-
ity and works well on incremental load of data.

This material is based upon work supported by the National Science Foundation under grant
no. IIS-0312266.

www.manaraa.com

 2

1 Introduction

In contemporary data mining systems, data is usually stored in flat files and its analysis tends
to be sequential. This is because contemporary storage systems do not contribute much to the
process of data mining. The prototype system described in this paper, which is called D*
(Data STorage And Retrieval), is a useful paradigm one can use to develop future storage
systems that contribute to the data mining process. The goal is not to include everything that
analysis needs into the storage system, but that in the process of achieving its primary objec-
tive (i.e., the fast and scalable access to the data), storage system can assist data analysis.

Laying out data on storage in a way that facilitates data analysis increases the performance
and scalability of data mining tasks. Moving analytical capabilities down to the storage sys-
tem streamlines the data mining process, reduces unnecessary redundancies, and enables hot
analysis as new data is arriving. Since storage system can have a more complete view of data,
it is in a better position than data mining applications to gain and provide a fast and accurate
insight into data distribution. In turn, gaining an accurate insight into data distribution is an
essential aspect of many data preprocessing and data mining tasks.

Basic processes of D* include data clustering, space partitioning, data loading, and data re-
trieval based on region and k nearest-neighbor (kNN) queries. To support these processes, the
system employs a new multi-dimensional indexing technique, an access method for similarity
searching, an efficient and scalable clustering algorithm, and two methods of deriving a space
partition. The techniques are designed to operate in high-dimensional spaces without dimen-
sionality reduction.

The D* system, and much of its constituent technology, is based on two design principles,
called the principles of clustering and cluster representation. In the existing literature, these
principles have been stated implicitly and in ways that are not particularly useful for the de-
sign of access methods for data in high-dimensional spaces. In fact, a vast majority of these
access methods were not designed with these principles in mind. Because we differentiate the
two principles and derive them formally, we believe that our formulations of these principles
are accurate statements of important goals around which multi-dimensional access methods
and multi-dimensional storage systems should be organized.

An important observation behind the D* system is that, in the pursuit of the principles of
clustering and cluster representation, the storage system must acquire a greater knowledge
about the data. This means that the storage system must become more intelligent in that it
itself must incorporate elements of data mining. This, in turn, provides a basis for a tighter
integration of data storage and data mining technologies.

The D* system is not meant to be a real analytical storage system; only a paradigm one could
use to develop such systems. D* is not meant to be a data mining application either. It is a
prototype system for storing and retrieving multi-dimensional data which also provides useful
insights into the data that can facilitate analysis. However, even as it is, D* can be used to
perform sophisticated analytical tasks. With more extensive data mining capabilities, which
can easily be incorporated into the system, D* can evolve into a genuine data mining system.

For example, in addition to data clustering supported by D*, a simple extension of the system
can support instance-based (kNN) data classification. Data pre-processing is another area

www.manaraa.com

 3

where the system can provide significant support. A relatively simple modification of our
data-sensitive space partitioning described later in this paper can enable the system to quan-
tify the discriminative power of every data dimension. This, in turn, can be used for efficient
attribute relevance ranking and dimensionality reduction. Other extensions of the system can
support imputation of missing values, data smoothing, and stratified sampling.

Since this technical document is intended to provide a complete description of the technical
aspects of the D* system, we repeat here some information and algorithms already published
in [Kul06], [Luk04], [Orl05], or [Orl06]. In the rest of the document, Section 2 summarizes
related work. Section 3 formulates the design principles around which the system is organ-
ized. Section 4 describes the general architecture of the D* system. Section 5 describes one of
the partitioning strategies applied by the system, called “data-blind” space partitioning. Sec-
tion 6 describes the main aspects of the clustering technique used by the system. Section 7
describes the process of data-sensitive space partitioning. Section 8 gives the algorithms of
similarity and region searching. Section 9 presents experimental evidence. Section 10 summa-
rizes the paper and discusses broader application of the technology described in this paper.

2 Related Work

High-dimensional data pose major challenges to many advanced applications, including sci-
entific data analysis. An important aspect of the general problem of data dimensionality is
that the performance of traditional multi-dimensional access methods rapidly deteriorates as
dimensionality grows. Yet despite a considerable interest in the problem of accessing data in
high-dimensional spaces [Boh01], we still know little about the basic parameters governing
the retrieval performance in these situations.

Early approaches to the problem of accessing data in high-dimensional spaces focused on the
fact that, as the number of dimensions increases, both the size of index entries and the storage
overhead of multi-dimensional structures grow accordingly. For example, the TV-tree [Lin95]
pursued the idea of selecting a relatively small number of “active” dimensions that may par-
ticipate in the process of node splitting. By ignoring the rest of the dimensions, the TV-tree
reduces the size of the indexing structure, which generally has positive effect on retrieval per-
formance. Many other access methods for high-dimensional data also apply dimensionality
reduction [Agg01, Fag03, Rav98, Yu04].

Several high-dimensional indexing techniques arose from the observation that the strategy of
partitioning the space may have a profound effect on the retrieval performance in high-
dimensional situations [Ber98, Cha99, Kat97, Sac00, Whi96]. For example, to improve the
performance in high-dimensional spaces, the Pyramid Technique [Ber98] statically partitions
the D-dimensional space into 2D pyramids that meet at the center of the universe. The Hy-
brid-tree [Cha99] follows a different approach. As long as the splits of index pages do not
require downward propagation, the structure uses the space partition of KDB-trees into non-
overlapping regions [Rob81]. In order to prevent downward cascading splits, it allows certain
amount of overlap (space covered by more than one index region) between the index regions
[Cha99], as in the R-tree variants [Bec90, Gut84]. The X-tree [Ber96] tries to eliminate re-
gion overlap, whose negative effects are more pronounced in high-dimensional spaces.

www.manaraa.com

 4

The diversity of the proposed techniques suggests that, in high-dimensional spaces, there are
numerous parameters of good retrieval performance one can pursue. We approach the design
of the D* system in a systematic way, guided by two important design goals: principle of
clustering and principle of cluster representation. As we will see in Section 3, the first design
principle deals with the grouping of multi-dimensional data in index pages, whereas the sec-
ond deals with their representation within the indices. The pursuit of these principles can re-
sult in significant improvements of retrieval performance [Orl06]. The principles of clustering
and cluster representation have been pursued in some contemporary multi-dimensional access
methods. However, in the existing literature [Bec90, Cia97], they have not been differenti-
ated. Moreover, they have generally been stated implicitly and in ways that are not particu-
larly useful for the design of access methods for high-dimensional feature spaces.

A vast majority of access methods was not designed with these principles in mind. Most in-
dexing techniques based on bit slicing, vertical partitioning, and dimensionality reduction
[deV02, Lin95, Rav98, Wu04] are not concerned with the quality of data clustering. Since
typical access methods based on space partitioning [Cha99, Gut84, Rob81] split an index
region along a selected dimension when a certain page overfills, the index regions cannot be
split along all dimensions of a high-dimensional space. As a result, these methods have many
of the same limitations as those that apply dimensionality reduction. M-trees [Cia97, Sex04]
adhere to these principles, but their construction relies on expensive distance computations
and incurs potentially large region overlap. To improve retrieval performance, new access
methods with explicit clustering have emerged [Cha00]. Unfortunately, the clustering tech-
niques used for this purpose do not scale well with a growing data dimensionality.

Similarity searching in high-dimensional spaces is an important research area. Real high-
dimensional data are often clustered and data tends to occupy only a small fraction of the
space [Blo03]. An appropriate search method must be aware of the locality of data in high
dimensions. However, most methods used to find the locality of data rely on dimensionality
reduction. Unless a multi-step approach is applied [Sei98], this leads to approximate results.

Due to high computational cost, finding approximate rather than exact solutions is the most
popular approach to k-nearest neighbor searching. In order to tackle the “curse of dimension-
ality”, various approximate solutions based on dimensionality reduction have been proposed
[Agg02, Fag03, Gio99]. [Agg02] emphasized the need to distinguish between the localities in
the data and introduced a concept of locality sensitive subspace sampling. The concept of
locality sensitive hashing (LSH) is developed in [Gio99]. The emphasis in [Agg02] and
[Gio99] is on finding the locality of the data in a way that makes the process of dimensional-
ity reduction more “data aware”. The focus is on local rather than global distribution of data.

Significant effort in finding the exact nearest neighbors has yielded limited success. The SR-
Tree [Kat97] uses both a hyper-sphere and hyper-rectangle to represent a region and improves
search efficiency over the SS-tree and R-tree. However, as reported in [Bey99], the SR-Tree
is at par with sequential scan when dimensionality is at least 20. The VA-File [Blo97,
Web98] applies a filter to the sequential scan using the concept of vector approximations. The
bit-encoded approximations guide the elimination of points during the search process. A-tree
[Sak00] and i-distance [Yu01, Yu04] are reported to work well in high dimensions. The A-
tree stores virtual bounding rectangles that approximate minimum bounding rectangles. i-
distance uses space partitioning to separate data into different regions. However, the data of
each region are transformed into a one-dimensional space in which the similarity is measured.

www.manaraa.com

 5

Our quest is for a solution with an efficient and scalable search, acceptable data-loading time,
and the ability to work on incremental loads of data. Despite considerable work done in the
area, this formulation of the problem of exact similarity and region searching in high-
dimensional spaces is still an intriguing one. We introduce a new way of arranging data on
storage to facilitate efficient search. A new space partitioning method is proposed along with
a new access method for high-dimensional data. The basic idea is to separate clusters in the
data and eliminate searching over empty space.

The work described in this paper is also related to the ongoing efforts on developing scientific
data grids [Che01, Fos01, Hos00]. The development of these information-technology frame-
works for scientific research is one of the most important undertakings in computer sciences
today. The main objective of these endeavors is to enable “geographically dispersed extrac-
tion of complex scientific information from very large collections of measured data” [Ave01].

Scientific data grids face difficult problems of scale arising from the large volumes and high
dimensionalities of scientific data. To support efficient and scalable retrieval of multi-
dimensional scientific data on a designated execution site, the storage and retrieval system
should employ a clustered storage organization that maximizes the densities of clusters on
storage [Orl03]. The clustering algorithm appropriate for this application should effectively
isolate areas with points, reducing the amount of their internal empty space. Furthermore, the
clustering method should scale in terms of the number of points and number of dimensions.

The performance of the grid operation has a significant bearing on the success of scientific
data grids. Since much of this performance depends on how fast one can find the desired
items in the large data repositories, an appropriate storage organization is critical for the suc-
cess of the data grids. Several research efforts, directly related to the data grid initiative, deal
with the problem of managing massive data repositories [Kur01, She02, Sho99]. Yet despite
these efforts, the problem of storage organization is not sufficiently addressed.

3 Design Principles
In the following, let us use the term storage cluster to denote the spatial region formed by
points in a storage unit, which we assume to be an index page. The basic design principle
underlying our approach states that: multi-dimensional data must be grouped on storage in a
way that minimizes the extensions of storage clusters along all relevant dimensions and
achieves high storage utilization. We call this the principle of clustering data on storage. For-
mal derivation of this principle appears in [Kul06].

The term "relevant dimensions'' refers to the fact that multi-dimensional queries may have
"affinity'' for certain dimensions, consistently leaving other dimensions unrestricted. How-
ever, if necessary, the clustering scheme used for storage organization must treat all data di-
mensions as equally important. Assuming a multi-dimensional space defined by relevant di-
mensions, the stated principle implies that the storage organization must maximize the densi-
ties of storage clusters both by increasing the number of points in the clusters and by reducing
their volumes. To increase the densities of storage clusters, the organization must reduce their
internal empty space. For best results, the database system should employ a genuine cluster-
ing algorithm for this purpose.

www.manaraa.com

 6

The spaces occupied by storage clusters (in our case, data in index pages) are depicted in the
index by structures we call index regions. Typically, these index regions are organized into a
hierarchy, which is searched in a top-down fashion. An index region is accessed if the query
overlaps it. Accessing an index region necessitates searching the contained index cluster(s).
To minimize the number of index clusters searched, index regions must be as tight and
square as possible around the enclosed index clusters, and have little empty internal space.
We call these design constraints the principle of cluster representation.

The two principles are not independent. The degree to which the principle of cluster represen-
tation can be achieved is largely determined by the quality of clustering. On the other hand,
without a good quality of cluster representation, the benefits of clustering data on storage are
typically lost. However, the adherence to one principle does not imply the adherence to the
other. Therefore, these principles are largely orthogonal design goals [Orl06].

We refer to the process of detecting dense areas (dense cells) in the space with minimum
amounts of empty space as data space reduction. In this context, data clustering is a process
of detecting the largest areas with this property, called data clusters. The principles of cluster-
ing and cluster representation can be achieved either by data clustering or by data space re-
duction only. However, a facility to do both is an advantage.

The adherence to the principles of clustering and cluster representation can facilitate various
kinds of retrieval by enabling a close-to-optimal assignment of data to pages and a significant
reduction of the search space even before the retrieval process hits persistent storage. For ef-
fective data space reduction, the clustering method should operate directly in the given space
without dimensionality reduction, and it should not be governed by any expectation about the
number of clusters. To be useful for storage organization, it must also be very efficient. This
set of requirements motivates the design of the GARDENHD clustering algorithm for high-
dimensional datasets introduced in [Orl05] and the DSGP data-sensitive space partitioning
technique described later in this paper.

4 The Architecture of the D* System
The processes of the D* system are illustrated in Figure 1. The clustering module produces a
compact cluster representation of data. Operating on this representation, the partitioning
module produces a data-sensitive Γ space partition. More details on Γ partitioning appear in
Section 5. The derived partition is maintained by a light-weight in-memory structure, called
the Γ filter. For the environments where explicit clustering of data is not possible or viable,
D* provides an option of deriving the space partition with no insight into the data distribu-
tion. This data-blind partitioning produces a fixed number of regions with equal volume.

In the process of data loading, the Γ filter acts like a filter that channels the points of each
region in the space partition into a separate KDB-tree index. Together, these indices represent
clustered data storage. With the facility for incremental loading, the system can subsequently
accept new data points through the existing space partition. The processes of data retrieval
include both region and similarity-search queries, which undergo two levels of filtering—one
in the memory-resident Γ filter and the other in the selected indices on disk.

In the D* system, Γ filter is used to impose a desirable behavior stated in our principles on
traditional multi-dimensional access methods that normally do not exhibit this behavior in

www.manaraa.com

 7

high-dimensional spaces. It provides an inexpensive way of achieving high performance and
scalability of multi-dimensional access, enabling effective reuse of existing multi-
dimensional access methods. The KDB-tree indexing technique is not necessarily optimal for
this environment. The R-tree [Gut84] would yield faster retrieval, but at the expense of
slower insertions. In environments with frequent insertions, the later cost can be significant.

Figure 1. Key processes of the D* system.

Using Γ filter, D* achieves static pre-clustering of data on disk that tends to reduce the vol-
umes of stoareg clusters. Γ partitioning provides the first level of insurance that in high-
dimensional spaces most regions are restricted along all dimensions, as required by the prin-
ciple of clustering. The memory-resident Γ filter helps eliminate from inspection potentially
large empty space, as required by the principle of cluster representation. Then, by applying
dynamic slicing of Γ regions using KDB-tree indices, the system produces dense index re-
gions consistent with both of our principles.

5 Data-Blind Gamma Partitioning

The Γ partitioning technique, which is illustrated in Figure 2, was first introduced in [Orl02].
A D-dimensional feature space (universe U) is partitioned by several nested hyper-rectangles
whose low endpoints lie in the origin of the space. The outermost hyper-rectangle is the space
itself. We call these nested hyper-rectangles partition generators, or just generators. The
space inside one generator and outside its immediately enclosed generator, if any, is called Γ
subspace. We refer to this process of partitioning the space as Γ partitioning because, in a 2-
dimensional space, these subspaces resemble the Greek letter Γ.

Except for the innermost subspace, each Γ subspace is divided into D non-overlapping rec-
tangular Γ regions by means of D-1 hyper-planes lying on the upper boundaries of its inner
generator. In Figure 2, these Γ regions are separated by dashed lines. With m > 0 generators
(including the universe U), the total number of Γ regions is NG = 1 + (m-1)⋅D. While Γ can
accommodate arbitrary nested generators, data-blind partitioning option produces Γ regions of
equal volume (data-sensitive space partitioning is described later in this paper).

Data Clustering

“Data-Sensitive”
Gamma Partitioning

Data Loading

Region Search Similarity Search

Incremental Data
Loading

Data Retrieval

“Data Blind”
Gamma Partitioning

www.manaraa.com

 8

Γ Region 0

Γ Subspace

Γ Region 1

Γ Region 3

Γ Subspace

Γ Region 4 Γ Region 2 Γ Region 0

Γ Subspace

In the actual representation of Γ partitioning (i.e., in the Γ filter), Γ regions are purely concep-
tual, i.e. their descriptors need not be stored. To describe a Γ space partition, one needs to
store m D-dimensional points, called generating vectors, each of which represents the high
endpoint of a generator. We assume that the first generating vector in the order is the high
endpoint of the universe. These generating vectors are derived using the algorithm for parti-
tioning the space into Γ regions of equal volume given in Figure 3. In order to compute each
coordinate of every generating vector, this procedure examines two coordinates of the tempo-
rary region G and performs a small number of single-value assignments. The time complexity
of the procedure is equivalent to O(m) comparisons of D-dimensional points.

Figure 2. An example of Γ partitioning in a 2-dimensional space.

One can derive the descriptors (the high and low endpoint) of each Γ region from the given
list of generating vectors. However, since both point and region (window) queries operate
directly on the list of generating vectors, full descriptors of the Γ regions are not required dur-
ing retrieval. This property of Γ partitioning facilitates fast in-memory processing of point
and region queries, equivalent to O(m) comparisons of d-dimensional points, where m is the
number of generators. For relatively small m, this amounts to O(1) point comparisons.

Figure 4 gives the algorithm that identifies the Γ region in which a given query point belongs.
The algorithm exploits the fact that each Γ region i ≥ 0 lies above the hyper-plane that sepa-
rates it from the space in which the subsequent Γ regions j > i lie (separating hyper-plane by
which the Γ region is carved out from the space). The procedure iterates over the conceptual
Γ regions in the order they are carved out from the space. The query point belongs to the first
Γ region in the order whose separating hyper-plain lies below the x-th coordinate of the given
point, where x is the dimension perpendicular to the separating hyper-plain of the Γ region.
This is determined by comparing the coordinates of the point against the corresponding coor-
dinates of the generating vectors. Thus, the time required to locate the Γ region in which a
point belongs is O(m) point comparisons.

www.manaraa.com

 9

PROCEDURE DataBlindGammaPartitioning
INPUT
 m; // number of generators (including the universe U)
 D; // data dimensionality
 U [low..high; 0..D-1]; // coordinates of the universe (need not be a unit space)
 OUTPUT
 GVlist [0..m-1; 0..D-1]; // list of generating vectors
BEGIN
 NG := 1+(m-1)⋅D; // number of Γ regions
 scale := 1/NG; // scale for the first Γ region
 G := U; // current generator
 GVlist[0] := U[high];
 for i:=1 to m-1 do

begin
 for j:=0 to D-1 do

 begin
 G[high,j] := G[low,j] + (G[high,j] – G[low,j])⋅(1–scale);
 scale := scale/(1–scale) // scale for the next Γ region
 end
 GVlist[i] := G[high];
 end
END

Figure 3. Algorithm for splitting the space into Γ regions of equal volume.

PROCEDURE pointQueryFiltering
INPUT

 m; // the number of generators
 D; // data dimensionality
 Qpoint [0..D-1]; // given query point
 GVlist [0..m-1; 0..D-1]; // list of generating vectors

OUTPUT
 i; // number of the Γ region containing the given point
BEGIN
 NG := 1+(m-1)⋅D; // number of Γ regions
 i := 0; // index of the first Γ region
 j := (i div D) + 1; // index of the corresponding generating vector
 x := i mod D; // dimension along which the Γ region is carved out

 while i < NG-1 and Qpoint[x] < GVlist[j,x] do
 begin
 i := i+1; j := (i div D) + 1; x := i mod D;
 end

END
Figure 4. Algorithm that locates Γ region containing a point.

www.manaraa.com

 10

PROCEDURE regionQueryFiltering
INPUT

 m; // number of generators
 D; // data dimensionality
 Qwindow [high..low; 0..D]; // query window
 GVlist [0..m-1; 0..D]; // list of generating vectors

OUTPUT
 NR; // number of Γ regions intersecting the query window

 Gregions [0..K-1]; // list of Γ regions intersecting the query
BEGIN
 NG := 1+(m-1)⋅D; // number of Γ regions
 k := 0; // counts Γ regions intersecting the query
 i := 0; // index of the first Γ region
 j := (i div D) + 1; // index of the corresponding generating vector
 x := i mod D; // dimension along which the Γ region is carved out
 while i < NG-1 and Qwindow[low,x] < GVlist[j,x] do
 begin
 if Qwindow[high,x] ≥ GVlist[j,x] then

 Gregions[k++] := i;
 i := i+1; j := (i div D) + 1; x := i mod D;
 end
 Gregions[k] := i; NR := k+1;

END
Figure 5. Algorithm that locates Γ regions which intersect a query window.

Figure 5 gives the algorithm that locates all Γ regions intersecting a query window, which is
similar to the algorithm for point search. The procedure proceeds as if it were looking for the
region i containing the low endpoint of the query window. For each region j < i, if any, it also
verifies that its high endpoint lies above the separating hyper-plane of the Γ region j, in which
case it intersects the query. Since this additional comparison requires only a comparison of
two numeric values, the time complexity of the region search is O(m) point comparisons.

One can verify the correctness of both the point and region search on the example given in
Figure 6. In particular, the point-search algorithm of Figure 4 finds that the high and low end-
points of the given query window lie within the Γ regions 2 and 4, respectively. Similarly,
tracing the region-search procedure of Figure 5, one will examine all 5 Γ regions. However,
since the high endpoint of the query window lies below the separating planes (in this exam-
ple, lines) of the Γ regions 0 and 1, these regions do not intersect the query window, and they
are eliminated from further inspection.

In the D* system, the Γ filter compactly represents the Γ space partition. During the inser-
tions, for each Γ region, the Γ filter dynamically maintains its live region, i.e. the minimum
bounding hyper-rectangle enclosing the points in the Γ region. During retrieval, these live
regions help eliminate potentially significant empty space, which increases the system’s com-
pliance with the principle of cluster representation.

www.manaraa.com

 11

Figure 6. Illustration of a region search on a 2D Γ space partition.

6 Data Clustering

A frequently cited goal of clustering is to provide insight into data distribution. Unfortunately,
contemporary clustering methods are not organized around this goal. They often break dis-
joint areas with points and merge their pieces into different clusters. Many clustering algo-
rithms require prior knowledge about the number of clusters, which is often hard to determine
in advance. However, inaccurate selection of this parameter can also lead to the segmentation
of dense areas and aggregation of their parts into different clusters. Frequently cited problems
of explicit or implicit dimensionality reduction, which many clustering methods perform or
require, is the potential loss of clusters and the distortion of spatial properties and densities of
clusters, which can heavily distort the sense of data distribution.

Our clustering technique, called GARDENHD [Orl05], is designed to provide a fast and accu-
rate insight into data distribution in order to facilitate data mining or retrieval. With an appro-
priately selected density threshold δ, which is the only required input parameter, the method
runs in O(NlogN) time, where N is the number of D-dimensional points in the data set.
GARDENHD can operate in high-dimensional spaces without dimensionality reduction.

The algorithm of GARDENHD is given in [Orl05]. Here, we briefly describe the method and
summarize its characteristics. GARDENHD is a hybrid of cell- and density-based clustering
that operates in two phases. Employing a recursive space partition using a variant of Γ parti-
tioning, the first phase performs an efficient data space reduction, identifying rectangular cells
whose density is above the user-defined threshold δ. In the second phase, the adjacent dense
cells are merged into larger clusters. It is the application of Γ partitioning that enables the
method to operate efficiently in high-dimensional spaces without dimensionality reduction.

Given a density threshold δ, the process of data space reduction starts by scanning the data
once in order to compute the live region LRU enclosing all points in the universe. The tech-
nique proceeds by partitioning LRU into multiple Γ regions. Within each Γ region, its live

Γ Region 1

Γ Region 4

Γ Region 2

Γ Region 3

Γ Region 0
Query Window

www.manaraa.com

 12

region is identified. Sparse live regions are recursively partitioned into smaller regions using
Γ partitioning and live-region identification, until each of the smaller live regions has a den-
sity of at least δ, becoming a dense cell. The process produces a compact "signature'' of data
consisting of the identified dense cells, represented by their low and high endpoints.

The process of data space reduction is illustrated in Figure 7. Figure 7a, in which dark ovals
represent areas populated by points, shows the Γ partition of the initial region LRU as well as
the live regions within the resulting Γ regions. In Figures 7b and 7c, sparse live regions LR1
and LR3 are partitioned further until all their enclosed dense cells are identified. Whenever a
high-density live region is detected (e.g., LR2 in Figure 7a), it is included into the set of dense
cells. The resultant dense cells of this example are shown in Figure 7d. Then the adjacent
dense cells are merged into larger clusters [Orl05].

(a)

LR3

LR2

LR1

(b)

3

2 1

1.1

1.2

3.1

3.2
3.3

(c)

2

1.1

1.2

3.1

3.2.1 3.2.2

3.3

(d)

Figure 7. Illustration of GARDENHD clustering.

Since optimal clustering is prohibitively expensive, all clustering algorithms are heuristic
methods. However, GARDENHD is a high performance clustering method not only because of
the heuristics it uses, but also because of the way it pursues the basic question that clustering
methods must answer: where do data points lie in the space? Rather than looking where the
points are, GARDENHD looks first for areas where they are not. After eliminating these areas,
what is left gives a good idea where the points are [Orl05]. This is a sensible approach from
the efficiency point of view because it is much easier to determine whether a region is empty,
dense, or sparse than to look for points in any given neighborhood.

By detecting clusters, all clustering methods perform implicit data space reduction. However,
in addition to the fact that the reduction is neither effective nor scalable, it regularly does not
preserve the essence of data in high-dimensional spaces. In contrast, the compact cluster rep-

www.manaraa.com

 13

resentation of data produced by GARDENHD can preserve all essential properties of data, in-
cluding the locations, shapes, and densities of clusters. As a result, many data mining tasks
can be performed on this representation alone. Therefore, GARDENHD can be used not only
as a clustering algorithm, but also as a data-reduction method alternative to (or in conjunction
with) dimensionality reduction, data compression, and data sampling.

Experiments show that GARDENHD is not only an efficient and scalable clustering method,
but that it effectively isolates densely populated areas in the space [Orl05]. Because of its
efficiency, scalability, and the ability to effectively isolate areas with points, GARDENHD is
appropriate for any intelligent system that supports advanced content-based retrieval. By pro-
viding a good insight into data distribution, it can enable a close-to-optimal assignment of
data to the units of persistent storage. Moreover, the experiments suggest that GARDENHD
can also be used as a general-purpose method for fast and scalable unsupervised learning.

7 Data-Sensitive Gamma Partitioning

The partitioning method, called DSGP (Data-Sensitive Gamma Partitioning), operates on the
cluster representation of data produced by GARDENHD and generates a space partition in
which well-separated clusters appear in different regions of the space. The algorithm runs in
time equivalent to O(C2) comparisons of D-dimensional points, where C is the number of
clusters detected by GARDENHD.

Each data cluster is approximated by its minimum bounding hyper-rectangle (MBR), repre-
sented by the low and high endpoints. As in data-blind Γ partitioning, DSGP produces static
Γ regions. However, the Γ regions are formed around spatial clusters. The number of resulting
regions depends on the number of clusters. The objective is to store points of each disjoint
cluster into a separate KDB-tree index.

Figure 8 illustrates the steps of the data-sensitive space partitioning strategy. Figure 8a shows
four clusters detected by GARDENHD. The DSGP procedure starts by sorting the clusters
based on their high endpoints along each dimension. As a result, each dimension is associated
with a sorted list of cluster indices. The procedure detects the gaps between clusters as fol-
lows. Going from the higher to lower coordinates along each dimension, the low endpoint of
each cluster is compared with the high endpoint of the next cluster until a gap is found. A
partitioning hyper-plane is drawn in the middle of a detected gap, perpendicular to the dimen-
sion with the minimum-containment region above the gap. By “minimum-containment re-
gion”, we mean a Γ region with the smallest number of clusters. The resulting space partition
is stored in the Γ filter. The live regions bounding the points of each Γ region in the Γ filter
are determined dynamically during initial and incremental data loading.

In Figure 8a, Cluster 1 has been assigned to the first Γ region. Hence, it is eliminated from
further consideration. The same procedure is repeated, and Cluster 2 is assigned to another
partition along the same dimension (Figure 8b). In the next iteration, a gap is found along the
second dimension (Figure 8c). The last cluster is assigned to the remaining Γ region. During
data loading, the constructed KBD-tree indices perform implicit partitioning of the respective
Γ regions into a collection of index regions, each of which bounds the points in an index page
(Figure 8d). Since no point can fall outside the live region of the corresponding Γ region, the
KDB-tree index regions are effectively bounded by the corresponding live regions.

www.manaraa.com

 14

Figure 8. Steps of the DSGP space partitioning.

If multiple clusters appear in the same Γ region, the DSGP procedure performs “slicing” of
the Γ region, so that each slice of the Γ region contains only one cluster. The current slicing
procedure requires a pair-wise comparison of the given cluster MBRs. It is also possible that
no gap can be found during an iteration of this algorithm or during slicing of a Γ region. In
such a case, DSGP performs a data-blind Γ partitioning of the space (region) in which the
overlapping cluster MBRs appear.

Figure 9 gives the DSGP partitioning algorithm. The live region LRU of the universe helps
eliminate zero-extension dimensions. If only one cluster is detected, the space is statically
partitioned as explained in Section 5. The indices of the clusters in the ClusterArray are
stored in at most D lists. For each dimension i with non-zero extension, the cluster MBRs are
sorted in the descending order of the i-th coordinates of their high endpoints. The algorithm
traverses each list until a gap between two consecutive cluster MBRs is found and counts the
number of clusters lying above the gap. A Γ region is extrapolated by partitioning the dimen-
sion for which the least number of clusters lie above the cut (gap).

www.manaraa.com

 15

 PROCEDURE DataSensitiveSpacePartitioning
 INPUT

LRU; // Live region of the universe:
ClusterArray: Clusters;

OUTPUT
Regions; // array of resulting Gamma regions.

DECLATIONS
NoClusters // number of clusters in ClusterArray;
ClustersIndex [D][NoClusters]; // cluster index lists for D dimensions
NoOfEliminatedClust = NoClusters;
SplitDimension = D; // dimension along which a split occurred

BEGIN
Eliminate zero-length dimensions of LRU;
if NoClusters = 1 then
 staticGammaPartition (NoGenerators); // Default NoGenerators is currently 3
else begin

for all non-zero length dimensions do // O(D⋅C⋅logC), where C is no. clusters
sortClustersInd (ClustersIndex); // Sort clusters on high points of cluster MBRs

while NoClusters > 1 do // O(D⋅C2) worst case, average case is much better
begin
for all non-zero length dimensions do

begin
Traverse from high end, find the first gap (with the highest coordinate) be-
tween two consecutive clusters, and record the number of clusters NoC
traversed above the gap;
if NoC < NoOfEliminatedClust then

Record the order number of the dimension in SplitDimension and set
NoOfEliminatedClust := NoC;

end
 if NoOfEliminatedClust < NoClusters then // Cut found for partitioning
 Assign the partition point and draw a partition line along the dimension;
 else begin

findCutsforOverlap (); // eliminate a cluster and find a cut
if noCutAvailable () then staticGammaPartition (NoGenerators);
return;
end

Update Regions array with new partitioned region formed;
Associate SplitDimension with the new region;

 Eliminate from the clusters array clusters before the gap; // O(D⋅C)
NoClusters � NoClusters – NoOfEliminatedClust;
NoOfEliminatedClust = NoClusters;
if NoClusters = 1 then

Update Regions array with the remaining region;
end

end
END

Figure 9. DSGP algorithm.

www.manaraa.com

 16

8 Similarity and Region Search

Through the Γ filter representing the partition produced by either DSGP or data-blind Γ parti-
tioning, the data points are inserted into appropriate KDB-tree indices. As points are inserted,
live regions of the Γ region and their slices are dynamically formed. Each inserted point ei-
ther grows a live region or falls inside it. For a point lying inside a live region, its distance to
the geometric center of the live region is calculated. This point becomes a representative of
the region if it is closer to the center of the live region than the previous representative, if any.
Note that the dynamic computation of representatives takes place after the clustering and par-
titioning are performed on an early data sample.

Figure 11 gives the algorithm for nearest-neighbor searching, called GammaNN (the k-NN
algorithm is a simple variant of this) [Kul06]. Since the information about the space partition
and live regions is maintained in memory, fast computations help eliminate from inspection a
potentially large number of regions without any distance calculations. As noted earlier, fast
in-memory computations are due to the way space partitioning is performed. Since the bulk
of filtering is done in memory, a very good retrieval performance can be achieved.

Figure 10 depicts the processes of similarity and region searching. The nearest neighbour
search in Figure 3a uses a query hyper-sphere with the query point at the center and the dis-
tance to its closest region representative as the radius. In this example, the hyper-sphere inter-
sects two live regions whose clipped portions are searched.

(a) (b)

Figure 10. k-Nearest Neighbor and Region Search.

Once the live regions that overlap the query hyper-sphere or query rectangle (window) are
determined, they are clipped against the hyper-sphere or the query window, respectively. The
KDB-tree corresponding to an overlapping live region is then queried with the appropriate
clip of the query window. In the case of a k-nearest neighbor searching, the query hyper-
sphere dynamically shrinks as the new nearest neighbors are detected. The points returned by
the queried KDB-tree indices are compared with the query point to construct the resulting list
of k-nearest neighbors. For a region search, illustrated in Figure 10b, the points returned by
the KDB-tree indices represent the result set.

www.manaraa.com

 17

PROCEDURE NearestNeighborSearch
INPUT

 Q; // query point:
 NoRegions; // number of Gamma regions
 Regions; // list of Gamma regions

OUTPUT
 Result.Point; // nearest neighbor
 Result.Distance; // distance to the nearest neighbor

DECLARATIONS
 Slice; // a slice of a region (region can have one or more slices)
 Slice.LR; // live region of the given slice
 TempResult; // contains a temporary NN and the distance to it
 Distance := ∞, Dist; // temporary distances

 Qclip; // query window (clip) by which an index is searched
BEGIN // find closest representative and “construct” the sphere
 for i:=1 to NoRegions do

 if sphereIntersectsGammaRegion (Q, Distance, Region[i]) then
 if Region[i].Cardinality > 0 // in a data-blind partition, region can be empty
 for j:=1 to Region[i].NoSlices do

if sphereIntersectsLiveRegion (Q, Distance, Region[i].Slice[j].LR)
 begin
 MarkSlice (Region[i].Slice[j]); // mark slice for later inspection
 if Dist := calculateDistance (Slice[j].Repr, Q) < Distance then
 begin Slice := Region[i].Slice[j]; Distance := Dist; end
 end
Qclip := constructSearchWindow (Q, Distance, Slice.LR); // construct query clip
Result := searchIndex (i, Qclip); // search index and return the temporary NN
Distance := Result.Distance; // examine points in other slices, shrinking the sphere
for each other Slice in the list of marked slices do
 if sphereIntersectsLiveRegion (Q, Distance, Slice.LR) then
 begin // since the sphere is shrinking, we had to test again for overlap
 Qclip := constructSearchWindow (Q, Distance, Slice.LR);
 TempResult :=searchIndex (i, Qclip);
 if TempResult.Distance < Distance then
 begin Distance := TempResult.Distance; Result := TempResult; end
 end

END
Figure 11. GammaNN algorithm for nearest-neighbor searching.

Figure 12 gives the algorithm of region search. The input to the algorithm is the query win-
dow. First, the procedure determines which Γ regions intersect the query window. This is
done by the procedure regionSearchFiltering of Figure 5. If an intersecting region has cardi-
nality greater than zero, the respective KDB-tree is queried with the clipped portion of the
query window that intersects the corresponding live region.

www.manaraa.com

 18

PROCEDURE RegionSearch
INPUT

 Qwindow; // query window
 NoRegions; // number of regions integer

OUTPUT
 Result; // list of points satisfying the query

DECLARATIONS
 Qclip; // query window (clip)
 Region; // list of Gamma regions
BEGIN // find all regions intersecting the hyper-sphere
 regionSearchFiltering (m, D, Qwindow, Gamma filter); // currently, m is set to 3
 for i:=1 to NoRegions do
 begin
 if windowIntersectsGR (Qwindow, Region[i]) then
 if Region[i].Cardinality > 0 // cardinality 0 is possible in data-blind partition
 for j:=1 to Region[i].NoSlices do

 if windowIntersectsLR (Qwindow, Region[i].Slice[j].LiveRegion) then
 begin

 Qclip := getQclip (Qwindow, Region[i].Slice[j].LiveRegion);
 Result := Result ∪ searchIndex (i, Qclip);

 end
 end

 return Result;
END

Figure 12. Region search algorithm.

www.manaraa.com

 19

9 Experimental Results

The experiments were performed on simulated and real data on a PC configuration with a 3.6
GHz CPU, 3GB RAM, and 280GB disk. In all structures, the page size was 8K bytes. We
assumed a normalized D-dimensional space [0,1]D. Each coordinate of a point was packed in
2 bytes. The GammaNN implementations with and without explicit clustering are referred to
here as ‘data aware’ and ‘data blind’ algorithms, respectively. The static Γ partitioning of the
data blind GammaNN was obtained assuming 3 generators, decided based on a number of
experiments. In the synthetic data of up to 100 dimensions, the points are distributed across
11 clusters—one in the center and 10 in random corners of the space. The real data is a 54-
dimensional forest cover type (“covtype”) set obtained from the UCI machine learning re-
pository (http://kdd.ics.uci.edu/databases/covertype/covertype.data.html).

9.1 Structure building and data loading time

Figure 13 gives the pre-processing time for two versions of GammaNN and the VA-File. For
the data-blind algorithm, this time includes the time of space partitioning, I/O (reading the
data), and the time for data loading (i.e., the construction of indices during insertion). The
data-aware algorithm includes the clustering time in addition. Observe that the pre-processing
time of this algorithm is heavily dominated by the construction of KDB-tree indices, whereas
GARDENHD clustering is very fast.

Ti
m

e
in

 s
ec

on
ds

Figure 13. Preprocessing time including the time for data loading.

For the VA-File technique, the pre-processing time includes the time to generate the VA-File.
Since this time is dominated by the calculation of approximation values and requires no in-
sertion of points into any data structure, a faster pre-processing for VA-File is expected.
However, since the pre-processing time is usually amortized over a large number of queries,
it is much less consequential than the search time.

www.manaraa.com

 20

9.2 Similarity Search

Figure 14 shows the results on 100,000 synthetic data points as their dimensionality increases
from 10 to 100. The data-aware algorithm is more than eight times faster than sequential scan
and six times faster than the VA-File. The data-aware method and the VA-File incur almost
the same number of page accesses to the data. However, this is because we counted only ac-
cesses to index or data pages, respectively. In other words, no page access was counted for
the processing of the Γ filter or the VA-File, which favors the latter technique. If the VA-File
were maintained on disk, the VA-File technique would incur many more page accesses.

Average page accesses for 100 queries
10 NN, synthetic data

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100
Number of dimensions

Data Blind

Data Aware

Sequential Scan

VA-File

Figure 14. Synthetic distribution with query distribution same as data, 10 NN.

Figure 15. Real data with 100 queries selected from the real data file, 10 NN.

Figure 16. Progress as the number of nearest neighbors increases on real data.

www.manaraa.com

 21

Figure 17. Time and average page accesses for incremental load on real data.

Figure 15 shows that the data-aware algorithm is significantly faster than sequential scan and
the VA-File. For this experiment, 580,900 points were loaded into each structure, and the
remaining 100 points in the data set were used as query points. Also noteworthy is that the
data-aware algorithm accesses only about 3% of all data points.

Figure 16 shows the changes in the performance of different methods with respect to the in-
creasing value of k in k-NN searching. Except for the data-blind algorithm, all methods have
a stable performance as k grows up to 100.

Figure 17 shows the performance of the data-aware algorithm on incremental loading of the
real data set. The clustering and space partitioning were performed on the first 100,000 points
in the set, which were loaded into the structure. The results of 10-NN queries were recorded
after subsequent incremental loads of 100,000 points. No re-clustering was performed after
an incremental load. However, as described earlier, the live regions and their respective rep-
resentatives were dynamically modified during the incremental loads. The equivalent results
of the same algorithm but without incremental loading (in Figure 17, referred to as “data
aware, full load”), i.e. after clustering the entire subset of the data, are used as benchmarks.

One can observe from Figure 17 that the data-aware GammaNN algorithm results in almost
the same number of page accesses and the query execution times with or without incremental
loading of data. This suggests that GammaNN reacts well to incremental loads. As in this
case, in many practical environments, it will require no re-clustering of data even after many
incremental loads. This is particularly important for scientific applications, which regularly
obtain data through incremental loads.

9.3 Region Search

The region search algorithm was tested on the same two data sets: synthetic (center-corners)
and the real covtype dataset (see Figures 18 and 19, respectively). The volume of generated
queries was 1% of the total space. The timing results on the synthetic data set show that the
data-blind and data-aware algorithms are much faster than than sequential scan. In terms of
page accesses, data-sensitive approach has much better performance than the other two
methods. The results on the covtype data set also reveal significantly better performance of
the data-sensitive algorithm.

www.manaraa.com

 22

Performace of the three algorithms

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

Number of dimensions

Ti
m

e
in

 s
ec

on
ds Sequential scan

GammaRS data
blind
GammaRS data
aware

Average page access per query for
centercorner distribution (simulated data)

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Number of dimensions

Av
g

pa
ge

 a
cc

es
s

pe
r

qu
er

y

Sequential scan

GammaRS data
blind
GammaRS data
aware

Figure 18. Time and average page access/query for 1% volume query.

Cumulative time for 100 queries
1% volume, region search

0
100
200
300
400
500
600
700
800

S. Scan Data Blind Data Aware

Ti
m

e
in

 s
ec

on
ds

Average page accessess for 100 queries
1% volume, region search

0

2000

4000

6000

8000

10000

S. Scan Data Blind Data Aware

A
vg

 p
ag

e
ac

ce
ss

es
s

Figure 19. Time and average page access per query for real data, 1% volume query.

10 Discussion

In this paper, we described a new system for storage and retrieval in high dimensionalities,
called D*. The system employs explicit data clustering using a new density-based clustering
method and a new data-sensitive space partitioning method in order to preserve the locality of
data and reduce the volumes of clusters on storage. The application of a memory-based filter
further improves the performance of similarity and region searching.

The comparison of the data-sensitive and data-blind approach clearly highlights the impor-
tance of clustering data on storage for efficient similarity search. Our approach can support
exact similarity search while accessing only a small fraction of data. The algorithm is very
efficient in high dimensionalities and performs better than sequential scan and the VA-File
technique. The performance remains good even after incremental loads of dynamically grow-
ing data sets without re-clustering.

The high retrieval performance is due to the system’s adherence to the design principles of
Section 3. By detecting dense areas in the space, the clustering facility determines the spatial
proximity of data. Data-sensitive space partitioning enables a static pre-clustering of data on
storage according to their spatial proximity. Storing the points of every region into a separate
KDB-tree index enables a dynamic sub-clustering of data into index pages that correspond to
relatively small and dense index regions, as required by the principle of clustering.

www.manaraa.com

 23

The application of the memory-resident filter is important for several reasons. The structure
dynamically channels incoming data into the appropriate indices. It dramatically reduces the
number of costly distance computations. With the dynamically maintained live regions, it
also reduces the amount of searching over empty space, enabling a potentially significant
reduction of search space before accessing the storage. With simple extensions, the system
can facilitate various analytical tasks, such as data classification and data pre-processing. In
our future work, we plan to incorporate some of these facilities.

Perhaps in no other systems is the interplay between data storage and data mining more
transparent than in scientific data grids. Their services like request planning and data replica-
tion are designed to increase the utilization of resources and the availability of data. However,
the issues of data storage and organization have received relatively little consideration, even
though they are critically important for these environments. This is because, when the size of
a data collection exceeds certain limits, the capabilities of any given site in a distributed and
replicated environment such as a data grid are determined not only by its computational and
data resources but also by the way data is organized on storage.

For example, a simple temporal ordering of data on storage is adequate for certain tasks that
access data in their temporal order, e.g. full data replication. However, when the repository is
queried on the intrinsic properties of data, the items that satisfy the query appear to be ran-
domly distributed across the storage. Therefore, a typical query must access many storage
units, and only a small fraction of the retrieved data is relevant. In scientific data grids, this
not only adversely affects the performance of analytical processing, but also has the effect of
“blinding” the process of request planning. The latter process selects the execution site for the
given program based in part on an estimate as to how much data will be accessed.

Clustering data on storage can generate two orders of magnitude fewer accesses to the storage
than the temporal layout of data. Unfortunately, clustering large data collections would re-
quire considerable computational and storage resources as well as periodic re-clustering of
the entire repository. Sometimes, clustering data on a subset of dimensions is what the appli-
cation needs. However, in other situations, this can lead to suboptimal performance as the
values of the remaining dimensions are disseminated across storage in a virtually random
fashion. Further complicating the matter, the access patterns change over time. Therefore, any
given storage organization is likely to become inappropriate at one time or another.

To address these problems, data repository should be replicated. However, since different
types of processing may require radically different storage organizations, the layout of data on
different replica sites should be different. A dynamically clustered storage organization that
can take the advantage of any number of dimensions, possibly all dimensions of data, would
tremendously facilitate this goal.

The technology described in this paper is designed with this goal in mind. It enables a mix of
static and dynamic decisions designed to achieve full benefits of clustering data on storage at
reasonable costs. As in the D* system, a static partition of the space can be used to organize
data into a priori clusters corresponding to different regions in the space. For best results, the
space partition can be derived after clustering an early sample of data. Even though the space
partition is static, the process of sub-clustering is performed dynamically while the data is

www.manaraa.com

 24

arriving. Depending on the type of storage, each a priori cluster of data (data points in a re-
gion of the space partition) can be maintained in a separate multi-dimensional index on disk
(as in the D* system) or a group of files on tertiary storage that are periodically re-clustered.
Since this a posteriori clustering operates on a relatively small subset of the data, it can be
performed in environments with limited resources. Our future plans include adaptations of
the technology described in this paper for tertiary-storage environments.

References

[Agg01] C.C. Aggarwal, "On the Effects of Dimensionality Reduction on High Dimensional Simi-
larity Search," Proc. 20th ACM PODS Symposium on Principles of Database Systems,
256-266, 2001.

[Agg02] C.C. Aggarwal, “Hierarchical Subspace Sampling: A Unified Framework for High Dimen-
sional Data Reduction, Selectivity Estimation and Nearest Neighbor Search,” Proc. ACM
SIGMOD Conf., 452-463, 2002.

[Ave01] P. Avery and I. Foster, “The GriPhyN Project: Towards Petascale Virtual Data Grids,”
GriPhyN-14, 2001. http://www.griphyn.org

[Bey99] K.S. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft, “When is `Nearest Neighbor'
Meaningful?,” Proc. 7th Int. Conf. on Database Theory, 217-235, 1999.

[Blo97] S. Blott and R. Weber, “A Simple Vector-Approximation File for Similarity Search in
High-Dimensional Vector Spaces,” Technical report, Esprit Project Hermes (#9141), 1997.

[Boh01] C. Bohm, S. Berchtold and D.A. Keim.”Searching in High-Dimensional Spaces - Index
Structures for Improving the Performance of Multimedia Databases,” ACM Computing
Surveys, 33(3): 322-373, 2001.

[Ber98] S. Berchtold, C. Bohm and H.P. Kriegel, "The Pyramid-Technique: Towards Breaking the
Curse of Dimensionality," Proc. ACM SIGMOD Conf., 142-153, 1998.

[Ber96] S. Berchtold, D.A. Keim and H.P. Kriegel. "The X-tree: An Index Structure for High-
Dimensional Data," Proc. of 22nd VLDB, Conf., 28-39, 1996.

[Bec90] N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger. "The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles," Proc. ACM SIGMOD, 322-331, 1990.

[Cha99] K. Chakrabarti and S. Mehrotra. "The Hybrid Tree: An Index Structure for High Dimen-
sional Feature Spaces," Proc. 15th ICDE Conf.. 440-447, 1999.

[Cha00] K. Chakrabarti and S. Mehrotra. “Local dimensionality Reduction: A New Approach to
Indexing High Dimensional Spaces,” Proc. 26th VLDB Conf., 89-100, 2000.

[Che01] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke, “The Data Grid: To-
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets,” Journal of Network and Computer Applications, 23:187-200, 2001.

[Cia97] P. Ciaccia, M. Patella, and P. Zezula. "M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces," Proc. 23rd VLDB Conf., 1997.

[Fag03] R. Fagin, R. Kumar, D. Shivakumar: “Efficient Similarity Search and Classification via
Rank Aggregation,” Proc. ACM SIGMOD Conf., 301-312, 2003.

www.manaraa.com

 25

[Fos01] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Vir-
tual Organization,” Int. Journal of High Performance Computing Applications, 15(3):200-
222, 2001.

[Gio99] A. Gionis, P. Indyk and R. Motwani, “Similarity Search in High Dimension via Hashing,”
Proc. 25th VLDB Conf., 518-529, 1999.

[Gut84] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM
SIGMOD Conf., 47--54, 1984.

[Hos00] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger and K. Stockinger, “Data Man-
agement in an International Data Grid Project,” Proc. First IEEE/ACM Int. Workshop on
Grid Computing, 2000.

[Kat97] N. Katayama and S. Stoh. "The SR-tree: An Index Structure for High-Dimensional Nearest
Neighbor Queries," SIGMOD Record 26(2):369-380, 1997.

[Kul06] S. Kulkarni and R. Orlandic, “High-Dimensional Similarity Search using Data-Sensitive
Space Partitioning,” Proc. 17th Int. Conf. on Database and Expert Systems DEXA, 2006.
(to appear)

[Kur01] T. Kurc, U. Catalyurek, C. Chang, A. Sussman and J. Saltz, “Visualization of Large Data-
sets with the Active Data Repository,” IEEE Computer Graphics and Applications,
21(4):24-33, 2001.

[Lin95] K. Lin, H. Jagadish, and C. Faloutsos, "The TV-tree: An Index Structure for High-
Dimensional Data," VLDB Journal. 3 (1995): 517-542.

[Luk04] J. Lukaszuk and R. Orlandic, "Efficient High-Dimensional Indexing by Superimposing
Space-Partitioning Schemes," Int. Database Engineering and Applications Symposium
IDEAS, 257-264, 2004.

[Orl03] R. Orlandic, “Effective Management of Hierarchical Storage Using Two Levels of Data
Clustering,” Proc. 20th IEEE / 11th NASA Goddard Conf. on Mass Storage Systems and
Technologies, 270-279, 2003.

[Orl05] R. Orlandic, Y. Lai and W.G. Yee, “Clustering High-Dimensional Data Using an Efficient
and Effective Data Space Reduction, Proc. ACM Conf. on Information and Knowledge
Management CIKM’05, 201-208, 2005.

[Orl06] R. Orlandic, J. Lukaszuk, S. Kulkarni, and W.G. Yee, “On Two Principles of Designing
Multi-Dimensional Access Methods,” Technical Document, 2006. Available at
www.cs.iit.edu/~egalite

[Orl02] R. Orlandic, J. Lukaszuk and C. Swietlik, “The Design of a Retrieval Technique for High-
Dimensional Data on Tertiary Storage,” SIGMOD Record, 31(2):15-21, 2002.

[Rav98] K.V. Ravi-Kanth, D. Agrawal and A. Singh. “Dimensionality Reduction for Similarity
Search in Dynamic Databases,” Proc. ACM SIGMOD Conf., 166-176, 1998.

[Rob81] J.T. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional Dynamic
Indexes,” Proc. ACM SIGMOD Conf., 10-18, 1981.

[Sak00] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. "The A-tree: An Index Structure
for High-dimensional Spaces Using Relative Approximation," Proc. 26th VLDB Conf.,
516-526, 2000.

[Sei98] T. Seidl and H.P. Kriegel, “Optimal Multi-Step k-Nearest Neighbor Search,” Proc. ACM
SIGMOD Conf., 154-165, 1998.

www.manaraa.com

 26

[Sex04] A.P. Sexton and R. Swinbank, “Bulk Loading the M-Tree to Enhance Query Performance,”
Proc. 21st British National Conference on Databases BNCOD, 190-202, 2004.

[She02] X. Shen and A. Choudhary, “A Distributed Multi-Storage I/O System for High Perform-
ance Data Intensive Computing,” Proc. IEEE Int. Symposium on Cluster Computing and
the Grid CCGrid, 2002.

[Sho99] A. Shoshani, L.M. Bernardo, H. Nordberg, D. Rotem and A. Sim, “Multidimensional In-
dexing and Query Coordination for Tertiary Storage Management,” Proc. 11th Int. Conf.
on Scientific and Statistical Database Management SSDBM, 214-225, 1999.

[deV02] A.P. de Vries, N. Mamoulis, N. Nes and M.L. Kersten. “Efficient k-NN Search
on Vertically Decomposed Data,” Proceedings of ACM SIGMOD International Confer-
ence on Management of Data. 322-333, 2002.

[Web98] R. Weber, H.J. Schek and S. Blott, “A Quantitative Analysis and Performance Study for
Similarity Search Methods in High-Dimensional Spaces,” Proc. 24th VLDB Conf., 194-
205, 1998.

[Whi96] D.A. White and R. Jain. "Similarity Indexing with the SS-tree,'' Proc. 12th ICDE Conf.,
516-523, 1996.

[Wu04] K. Wu, E.J. Otoo and A. Shoshani. “On the Performance of Bitmap Indices for High Car-
dinality Attributes,” Proc. 30th VLDB Conf., 24-35, 2004.

[Yu04] C. Yu, S. Bressan, B.C. Ooi and K.-L. Tan, “Querying High-Dimensional Data in Single-
Dimensional Space,” VLDB Journal 13(2):105-119, 2004.

[Yu01] C. Yu, B.C. Ooi, K.-L. Tan and H.V. Jagadish, “Indexing the Distance: An Efficient
Method to KNN Processing,” Proc. 26th VLDB Conf., 421-430, 2001.

