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Abstract 
 
D* is a novel system for data storage and retrieval appropriate for advanced scien-
tific studies, as in high-energy physics, environmental sciences, and astronomy. 
The design of the D* system is based on certain principles of organizing and ac-
cessing multi-dimensional data on storage, whose pursuit requires that the storage 
system acquire a greater knowledge about the data. This provides a basis for a 
tighter integration of data storage and data mining technologies. Through the ap-
plication of innovative retrieval and clustering techniques for high-dimensional 
data, D* can support high-performance data access and provide data mining ap-
plications useful insights into the data that can facilitate subsequent processes of 
data preparation and data mining. The basic processes of the D* system include 
data clustering, space partitioning, data loading, and data retrieval based on region 
queries and similarity searching. D* scales well with increasing data dimensional-
ity and works well on incremental load of data. 
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1 Introduction 

In contemporary data mining systems, data is usually stored in flat files and its analysis tends 
to be sequential. This is because contemporary storage systems do not contribute much to the 
process of data mining. The prototype system described in this paper, which is called D* 
(Data STorage And Retrieval), is a useful paradigm one can use to develop future storage 
systems that contribute to the data mining process. The goal is not to include everything that 
analysis needs into the storage system, but that in the process of achieving its primary objec-
tive (i.e., the fast and scalable access to the data), storage system can assist data analysis. 

 
Laying out data on storage in a way that facilitates data analysis increases the performance 
and scalability of data mining tasks. Moving analytical capabilities down to the storage sys-
tem streamlines the data mining process, reduces unnecessary redundancies, and enables hot 
analysis as new data is arriving. Since storage system can have a more complete view of data, 
it is in a better position than data mining applications to gain and provide a fast and accurate 
insight into data distribution. In turn, gaining an accurate insight into data distribution is an 
essential aspect of many data preprocessing and data mining tasks. 
 
Basic processes of D* include data clustering, space partitioning, data loading, and data re-
trieval based on region and k nearest-neighbor (kNN) queries. To support these processes, the 
system employs a new multi-dimensional indexing technique, an access method for similarity 
searching, an efficient and scalable clustering algorithm, and two methods of deriving a space 
partition. The techniques are designed to operate in high-dimensional spaces without dimen-
sionality reduction. 
 
The D* system, and much of its constituent technology, is based on two design principles, 
called the principles of clustering and cluster representation. In the existing literature, these 
principles have been stated implicitly and in ways that are not particularly useful for the de-
sign of access methods for data in high-dimensional spaces. In fact, a vast majority of these 
access methods were not designed with these principles in mind. Because we differentiate the 
two principles and derive them formally, we believe that our formulations of these principles 
are accurate statements of important goals around which multi-dimensional access methods 
and multi-dimensional storage systems should be organized. 
 
An important observation behind the D* system is that, in the pursuit of the principles of 
clustering and cluster representation, the storage system must acquire a greater knowledge 
about the data. This means that the storage system must become more intelligent in that it 
itself must incorporate elements of data mining. This, in turn, provides a basis for a tighter 
integration of data storage and data mining technologies.  
 
The D* system is not meant to be a real analytical storage system; only a paradigm one could 
use to develop such systems. D* is not meant to be a data mining application either. It is a 
prototype system for storing and retrieving multi-dimensional data which also provides useful 
insights into the data that can facilitate analysis. However, even as it is, D* can be used to 
perform sophisticated analytical tasks. With more extensive data mining capabilities, which 
can easily be incorporated into the system, D* can evolve into a genuine data mining system. 
 
For example, in addition to data clustering supported by D*, a simple extension of the system 
can support instance-based (kNN) data classification. Data pre-processing is another area 
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where the system can provide significant support. A relatively simple modification of our 
data-sensitive space partitioning described later in this paper can enable the system to quan-
tify the discriminative power of every data dimension. This, in turn, can be used for efficient 
attribute relevance ranking and dimensionality reduction. Other extensions of the system can 
support imputation of missing values, data smoothing, and stratified sampling. 
 
Since this technical document is intended to provide a complete description of the technical 
aspects of the D* system, we repeat here some information and algorithms already published 
in [Kul06], [Luk04], [Orl05], or [Orl06]. In the rest of the document, Section 2 summarizes 
related work. Section 3 formulates the design principles around which the system is organ-
ized. Section 4 describes the general architecture of the D* system. Section 5 describes one of 
the partitioning strategies applied by the system, called “data-blind” space partitioning. Sec-
tion 6 describes the main aspects of the clustering technique used by the system. Section 7 
describes the process of data-sensitive space partitioning. Section 8 gives the algorithms of 
similarity and region searching. Section 9 presents experimental evidence. Section 10 summa-
rizes the paper and discusses broader application of the technology described in this paper. 

2 Related Work 

High-dimensional data pose major challenges to many advanced applications, including sci-
entific data analysis. An important aspect of the general problem of data dimensionality is 
that the performance of traditional multi-dimensional access methods rapidly deteriorates as 
dimensionality grows. Yet despite a considerable interest in the problem of accessing data in 
high-dimensional spaces [Boh01], we still know little about the basic parameters governing 
the retrieval performance in these situations. 
  
Early approaches to the problem of accessing data in high-dimensional spaces focused on the 
fact that, as the number of dimensions increases, both the size of index entries and the storage 
overhead of multi-dimensional structures grow accordingly. For example, the TV-tree [Lin95] 
pursued the idea of selecting a relatively small number of “active” dimensions that may par-
ticipate in the process of node splitting. By ignoring the rest of the dimensions, the TV-tree 
reduces the size of the indexing structure, which generally has positive effect on retrieval per-
formance. Many other access methods for high-dimensional data also apply dimensionality 
reduction [Agg01, Fag03, Rav98, Yu04]. 
 
Several high-dimensional indexing techniques arose from the observation that the strategy of 
partitioning the space may have a profound effect on the retrieval performance in high-
dimensional situations [Ber98, Cha99, Kat97, Sac00, Whi96]. For example, to improve the 
performance in high-dimensional spaces, the Pyramid Technique [Ber98] statically partitions 
the D-dimensional space into 2D pyramids that meet at the center of the universe. The Hy-
brid-tree [Cha99] follows a different approach. As long as the splits of index pages do not 
require downward propagation, the structure uses the space partition of KDB-trees into non-
overlapping regions [Rob81]. In order to prevent downward cascading splits, it allows certain 
amount of overlap (space covered by more than one index region) between the index regions 
[Cha99], as in the R-tree variants [Bec90, Gut84]. The X-tree [Ber96] tries to eliminate re-
gion overlap, whose negative effects are more pronounced in high-dimensional spaces.  
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The diversity of the proposed techniques suggests that, in high-dimensional spaces, there are 
numerous parameters of good retrieval performance one can pursue. We approach the design 
of the D* system in a systematic way, guided by two important design goals: principle of 
clustering and principle of cluster representation. As we will see in Section 3, the first design 
principle deals with the grouping of multi-dimensional data in index pages, whereas the sec-
ond deals with their representation within the indices. The pursuit of these principles can re-
sult in significant improvements of retrieval performance [Orl06]. The principles of clustering 
and cluster representation have been pursued in some contemporary multi-dimensional access 
methods. However, in the existing literature [Bec90, Cia97], they have not been differenti-
ated. Moreover, they have generally been stated implicitly and in ways that are not particu-
larly useful for the design of access methods for high-dimensional feature spaces.  
 
A vast majority of access methods was not designed with these principles in mind. Most in-
dexing techniques based on bit slicing, vertical partitioning, and dimensionality reduction 
[deV02, Lin95, Rav98, Wu04] are not concerned with the quality of data clustering. Since 
typical access methods based on space partitioning [Cha99, Gut84, Rob81] split an index 
region along a selected dimension when a certain page overfills, the index regions cannot be 
split along all dimensions of a high-dimensional space. As a result, these methods have many 
of the same limitations as those that apply dimensionality reduction. M-trees [Cia97, Sex04] 
adhere to these principles, but their construction relies on expensive distance computations 
and incurs potentially large region overlap. To improve retrieval performance, new access 
methods with explicit clustering have emerged [Cha00]. Unfortunately, the clustering tech-
niques used for this purpose do not scale well with a growing data dimensionality. 
 
Similarity searching in high-dimensional spaces is an important research area. Real high-
dimensional data are often clustered and data tends to occupy only a small fraction of the 
space [Blo03]. An appropriate search method must be aware of the locality of data in high 
dimensions. However, most methods used to find the locality of data rely on dimensionality 
reduction. Unless a multi-step approach is applied [Sei98], this leads to approximate results. 
 
Due to high computational cost, finding approximate rather than exact solutions is the most 
popular approach to k-nearest neighbor searching. In order to tackle the “curse of dimension-
ality”, various approximate solutions based on dimensionality reduction have been proposed 
[Agg02, Fag03, Gio99]. [Agg02] emphasized the need to distinguish between the localities in 
the data and introduced a concept of locality sensitive subspace sampling. The concept of 
locality sensitive hashing (LSH) is developed in [Gio99]. The emphasis in [Agg02] and 
[Gio99] is on finding the locality of the data in a way that makes the process of dimensional-
ity reduction more “data aware”. The focus is on local rather than global distribution of data.  
 
Significant effort in finding the exact nearest neighbors has yielded limited success. The SR-
Tree [Kat97] uses both a hyper-sphere and hyper-rectangle to represent a region and improves 
search efficiency over the SS-tree and R-tree. However, as reported in [Bey99], the SR-Tree 
is at par with sequential scan when dimensionality is at least 20. The VA-File [Blo97, 
Web98] applies a filter to the sequential scan using the concept of vector approximations. The 
bit-encoded approximations guide the elimination of points during the search process. A-tree 
[Sak00] and i-distance [Yu01, Yu04] are reported to work well in high dimensions. The A-
tree stores virtual bounding rectangles that approximate minimum bounding rectangles. i-
distance uses space partitioning to separate data into different regions. However, the data of 
each region are transformed into a one-dimensional space in which the similarity is measured.  
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Our quest is for a solution with an efficient and scalable search, acceptable data-loading time, 
and the ability to work on incremental loads of data. Despite considerable work done in the 
area, this formulation of the problem of exact similarity and region searching in high-
dimensional spaces is still an intriguing one. We introduce a new way of arranging data on 
storage to facilitate efficient search. A new space partitioning method is proposed along with 
a new access method for high-dimensional data. The basic idea is to separate clusters in the 
data and eliminate searching over empty space. 
 
The work described in this paper is also related to the ongoing efforts on developing scientific 
data grids [Che01, Fos01, Hos00]. The development of these information-technology frame-
works for scientific research is one of the most important undertakings in computer sciences 
today. The main objective of these endeavors is to enable “geographically dispersed extrac-
tion of complex scientific information from very large collections of measured data” [Ave01]. 
 

Scientific data grids face difficult problems of scale arising from the large volumes and high 
dimensionalities of scientific data. To support efficient and scalable retrieval of multi-
dimensional scientific data on a designated execution site, the storage and retrieval system 
should employ a clustered storage organization that maximizes the densities of clusters on 
storage [Orl03]. The clustering algorithm appropriate for this application should effectively 
isolate areas with points, reducing the amount of their internal empty space. Furthermore, the 
clustering method should scale in terms of the number of points and number of dimensions.  
 
The performance of the grid operation has a significant bearing on the success of scientific 
data grids. Since much of this performance depends on how fast one can find the desired 
items in the large data repositories, an appropriate storage organization is critical for the suc-
cess of the data grids. Several research efforts, directly related to the data grid initiative, deal 
with the problem of managing massive data repositories [Kur01, She02, Sho99]. Yet despite 
these efforts, the problem of storage organization is not sufficiently addressed. 
 

3    Design Principles 
In the following, let us use the term storage cluster to denote the spatial region formed by 
points in a storage unit, which we assume to be an index page. The basic design principle 
underlying our approach states that: multi-dimensional data must be grouped on storage in a 
way that minimizes the extensions of storage clusters along all relevant dimensions and 
achieves high storage utilization. We call this the principle of clustering data on storage. For-
mal derivation of this principle appears in [Kul06].  
 
The term "relevant dimensions'' refers to the fact that multi-dimensional queries may have 
"affinity'' for certain dimensions, consistently leaving other dimensions unrestricted. How-
ever, if necessary, the clustering scheme used for storage organization must treat all data di-
mensions as equally important. Assuming a multi-dimensional space defined by relevant di-
mensions, the stated principle implies that the storage organization must maximize the densi-
ties of storage clusters both by increasing the number of points in the clusters and by reducing 
their volumes. To increase the densities of storage clusters, the organization must reduce their 
internal empty space. For best results, the database system should employ a genuine cluster-
ing algorithm for this purpose. 
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The spaces occupied by storage clusters (in our case, data in index pages) are depicted in the 
index by structures we call index regions.  Typically, these index regions are organized into a 
hierarchy, which is searched in a top-down fashion. An index region is accessed if the query 
overlaps it. Accessing an index region necessitates searching the contained index cluster(s). 
To minimize the number of index clusters searched, index regions must be as tight and 
square as possible around the enclosed index clusters, and have little empty internal space. 
We call these design constraints the principle of cluster representation. 
 
The two principles are not independent. The degree to which the principle of cluster represen-
tation can be achieved is largely determined by the quality of clustering. On the other hand, 
without a good quality of cluster representation, the benefits of clustering data on storage are 
typically lost. However, the adherence to one principle does not imply the adherence to the 
other. Therefore, these principles are largely orthogonal design goals [Orl06]. 
 
We refer to the process of detecting dense areas (dense cells) in the space with minimum 
amounts of empty space as data space reduction. In this context, data clustering is a process 
of detecting the largest areas with this property, called data clusters. The principles of cluster-
ing and cluster representation can be achieved either by data clustering or by data space re-
duction only. However, a facility to do both is an advantage.  
 
The adherence to the principles of clustering and cluster representation can facilitate various 
kinds of retrieval by enabling a close-to-optimal assignment of data to pages and a significant 
reduction of the search space even before the retrieval process hits persistent storage. For ef-
fective data space reduction, the clustering method should operate directly in the given space 
without dimensionality reduction, and it should not be governed by any expectation about the 
number of clusters. To be useful for storage organization, it must also be very efficient. This 
set of requirements motivates the design of the GARDENHD clustering algorithm for high-
dimensional datasets introduced in [Orl05] and the DSGP data-sensitive space partitioning 
technique described later in this paper. 
 

4  The Architecture of the D* System  
The processes of the D* system are illustrated in Figure 1. The clustering module produces a 
compact cluster representation of data. Operating on this representation, the partitioning 
module produces a data-sensitive Γ space partition. More details on Γ partitioning appear in 
Section 5. The derived partition is maintained by a light-weight in-memory structure, called 
the Γ filter. For the environments where explicit clustering of data is not possible or viable, 
D* provides an option of deriving the space partition with no insight into the data distribu-
tion. This data-blind partitioning produces a fixed number of regions with equal volume.  
 
In the process of data loading, the Γ filter acts like a filter that channels the points of each 
region in the space partition into a separate KDB-tree index. Together, these indices represent 
clustered data storage. With the facility for incremental loading, the system can subsequently 
accept new data points through the existing space partition. The processes of data retrieval 
include both region and similarity-search queries, which undergo two levels of filtering—one 
in the memory-resident Γ filter and the other in the selected indices on disk. 
 
In the D* system, Γ filter is used to impose a desirable behavior stated in our principles on 
traditional multi-dimensional access methods that normally do not exhibit this behavior in 
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high-dimensional spaces. It provides an inexpensive way of achieving high performance and 
scalability of multi-dimensional access, enabling effective reuse of existing multi-
dimensional access methods. The KDB-tree indexing technique is not necessarily optimal for 
this environment. The R-tree [Gut84] would yield faster retrieval, but at the expense of 
slower insertions. In environments with frequent insertions, the later cost can be significant.  
 

 
 

Figure 1. Key processes of the D* system. 
 

Using Γ filter, D* achieves static pre-clustering of data on disk that tends to reduce the vol-
umes of stoareg clusters. Γ partitioning provides the first level of insurance that in high-
dimensional spaces most regions are restricted along all dimensions, as required by the prin-
ciple of clustering. The memory-resident Γ filter helps eliminate from inspection potentially 
large empty space, as required by the principle of cluster representation. Then, by applying 
dynamic slicing of Γ regions using KDB-tree indices, the system produces dense index re-
gions consistent with both of our principles.  

5   Data-Blind Gamma Partitioning 

The Γ partitioning technique, which is illustrated in Figure 2, was first introduced in [Orl02]. 
A D-dimensional feature space (universe U) is partitioned by several nested hyper-rectangles 
whose low endpoints lie in the origin of the space. The outermost hyper-rectangle is the space 
itself. We call these nested hyper-rectangles partition generators, or just generators. The 
space inside one generator and outside its immediately enclosed generator, if any, is called Γ 
subspace.  We refer to this process of partitioning the space as Γ partitioning because, in a 2-
dimensional space, these subspaces resemble the Greek letter Γ.  
 
Except for the innermost subspace, each Γ subspace is divided into D non-overlapping rec-
tangular Γ regions by means of D-1 hyper-planes lying on the upper boundaries of its inner 
generator. In Figure 2, these Γ regions are separated by dashed lines. With m > 0 generators 
(including the universe U), the total number of Γ regions is NG = 1 + (m-1)⋅D. While Γ can 
accommodate arbitrary nested generators, data-blind partitioning option produces Γ regions of 
equal volume (data-sensitive space partitioning is described later in this paper). 

Data Clustering 

“Data-Sensitive”  
Gamma Partitioning 

Data Loading 

Region Search Similarity Search 

Incremental   Data 
Loading 

Data Retrieval 

“Data Blind”  
Gamma Partitioning 
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In the actual representation of Γ partitioning (i.e., in the Γ filter), Γ regions are purely concep-
tual, i.e. their descriptors need not be stored. To describe a Γ space partition, one needs to 
store m D-dimensional points, called generating vectors, each of which represents the high 
endpoint of a generator. We assume that the first generating vector in the order is the high 
endpoint of the universe. These generating vectors are derived using the algorithm for parti-
tioning the space into Γ regions of equal volume given in Figure 3.  In order to compute each 
coordinate of every generating vector, this procedure examines two coordinates of the tempo-
rary region G and performs a small number of single-value assignments. The time complexity 
of the procedure is equivalent to O(m) comparisons of D-dimensional points. 
 
  

 

 

 

 

 

 

 

 

 

Figure 2.  An example of Γ partitioning in a 2-dimensional space. 
 
One can derive the descriptors (the high and low endpoint) of each Γ region from the given 
list of generating vectors. However, since both point and region (window) queries operate 
directly on the list of generating vectors, full descriptors of the Γ regions are not required dur-
ing retrieval. This property of  Γ partitioning facilitates fast in-memory processing of point 
and region queries, equivalent to O(m) comparisons of d-dimensional points, where m is the 
number of generators. For relatively small m, this amounts to O(1) point comparisons. 

 
Figure 4 gives the algorithm that identifies the Γ region in which a given query point belongs. 
The algorithm exploits the fact that each Γ region i ≥ 0 lies above the hyper-plane that sepa-
rates it from the space in which the subsequent Γ regions j > i lie (separating hyper-plane by 
which the Γ region is carved out from the space). The procedure iterates over the conceptual 
Γ regions in the order they are carved out from the space. The query point belongs to the first 
Γ region in the order whose separating hyper-plain lies below the x-th coordinate of the given 
point, where x is the dimension perpendicular to the separating hyper-plain of the Γ region. 
This is determined by comparing the coordinates of the point against the corresponding coor-
dinates of the generating vectors. Thus, the time required to locate the Γ region in which a 
point belongs is O(m) point comparisons.   
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PROCEDURE DataBlindGammaPartitioning 
INPUT 
        m;                          // number of generators (including the universe U) 
        D;                           // data dimensionality 
        U [low..high; 0..D-1];  // coordinates of the universe (need not be a unit space) 
 OUTPUT 
        GVlist [0..m-1; 0..D-1];  // list of generating vectors 
BEGIN 
        NG := 1+(m-1)⋅D;       // number of Γ regions 
        scale := 1/NG;          // scale for the first Γ region 
        G := U;            // current generator 
        GVlist[0] := U[high]; 
        for i:=1 to m-1 do 

begin 
     for j:=0 to D-1 do 

         begin 
      G[high,j] := G[low,j] + (G[high,j] – G[low,j])⋅(1–scale);  
            scale := scale/(1–scale)   // scale for the next Γ region 
                  end 
         GVlist[i] := G[high]; 
         end 
END 

Figure 3. Algorithm for splitting the space into Γ regions of equal volume. 
 
 
 
 
 
 
PROCEDURE pointQueryFiltering 
INPUT 

    m;                          // the number of generators 
 D;         // data dimensionality    
 Qpoint [0..D-1];    // given query point 
 GVlist [0..m-1; 0..D-1];  // list of generating vectors 

OUTPUT 
  i;         // number of the Γ region containing the given point   
BEGIN  
       NG := 1+(m-1)⋅D;       // number of Γ regions 
  i := 0;       // index of the first Γ region 
  j  := (i div D) + 1;   // index of the corresponding generating vector 
  x := i mod D;     // dimension along which the Γ region is carved out  

  while i < NG-1 and Qpoint[x] < GVlist[j,x] do 
   begin 
   i := i+1; j := (i div D) + 1; x := i mod D;  
   end 

END 
Figure 4. Algorithm that locates Γ region containing a point. 
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PROCEDURE regionQueryFiltering 
INPUT 

    m;                           // number of generators 
 D;          // data dimensionality    
 Qwindow [high..low; 0..D]; // query window 
 GVlist [0..m-1; 0..D];   // list of generating vectors 

OUTPUT 
  NR;         // number of Γ regions intersecting the query window  

  Gregions [0..K-1];    // list of Γ regions intersecting the query 
BEGIN  
      NG := 1+(m-1)⋅D;        // number of Γ regions 
 k := 0;        // counts Γ regions intersecting the query 
 i := 0;        // index of the first Γ region 
 j := (i div D) + 1;    // index of the corresponding generating vector 
 x := i mod D;      // dimension along which the Γ region is carved out 
 while i < NG-1 and Qwindow[low,x] < GVlist[j,x] do 
  begin  
  if Qwindow[high,x] ≥ GVlist[j,x] then 

    Gregions[k++] := i;  
   i := i+1; j := (i div D) + 1; x := i mod D;  
   end 
  Gregions[k] := i; NR := k+1;  

END 
Figure 5. Algorithm that locates Γ regions which intersect a query window. 

 
 

Figure 5 gives the algorithm that locates all Γ regions intersecting a query window, which is 
similar to the algorithm for point search. The procedure proceeds as if it were looking for the 
region i containing the low endpoint of the query window. For each region j < i, if any, it also 
verifies that its high endpoint lies above the separating hyper-plane of the Γ region j, in which 
case it intersects the query. Since this additional comparison requires only a comparison of 
two numeric values, the time complexity of the region search is O(m) point comparisons. 
 
One can verify the correctness of both the point and region search on the example given in 
Figure 6. In particular, the point-search algorithm of Figure 4 finds that the high and low end-
points of the given query window lie within the Γ regions 2 and 4, respectively. Similarly, 
tracing the region-search procedure of Figure 5, one will examine all 5 Γ regions. However, 
since the high endpoint of the query window lies below the separating planes (in this exam-
ple, lines) of the Γ regions 0 and 1, these regions do not intersect the query window, and they 
are eliminated from further inspection.  
 
In the D* system, the Γ filter compactly represents the Γ space partition. During the inser-
tions, for each Γ region, the Γ filter dynamically maintains its live region, i.e. the minimum 
bounding hyper-rectangle enclosing the points in the Γ region. During retrieval, these live 
regions help eliminate potentially significant empty space, which increases the system’s com-
pliance with the principle of cluster representation. 
 

 
 



www.manaraa.com

 11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Illustration of a region search on a 2D Γ space partition. 
 

6   Data Clustering 

A frequently cited goal of clustering is to provide insight into data distribution. Unfortunately, 
contemporary clustering methods are not organized around this goal. They often break dis-
joint areas with points and merge their pieces into different clusters. Many clustering algo-
rithms require prior knowledge about the number of clusters, which is often hard to determine 
in advance. However, inaccurate selection of this parameter can also lead to the segmentation 
of dense areas and aggregation of their parts into different clusters. Frequently cited problems 
of explicit or implicit dimensionality reduction, which many clustering methods perform or 
require, is the potential loss of clusters and the distortion of spatial properties and densities of 
clusters, which can heavily distort the sense of data distribution. 
 
Our clustering technique, called GARDENHD [Orl05], is designed to provide a fast and accu-
rate insight into data distribution in order to facilitate data mining or retrieval. With an appro-
priately selected density threshold δ, which is the only required input parameter, the method 
runs in O(NlogN) time, where N is the number of D-dimensional points in the data set. 
GARDENHD can operate in high-dimensional spaces without dimensionality reduction. 
 
The algorithm of GARDENHD is given in [Orl05]. Here, we briefly describe the method and 
summarize its characteristics. GARDENHD is a hybrid of cell- and density-based clustering 
that operates in two phases. Employing a recursive space partition using a variant of Γ parti-
tioning, the first phase performs an efficient data space reduction, identifying rectangular cells 
whose density is above the user-defined threshold δ. In the second phase, the adjacent dense 
cells are merged into larger clusters. It is the application of Γ partitioning that enables the 
method to operate efficiently in high-dimensional spaces without dimensionality reduction. 

 
Given a density threshold δ, the process of data space reduction starts by scanning the data 
once in order to compute the live region LRU enclosing all points in the universe. The tech-
nique proceeds by partitioning LRU into multiple Γ regions. Within each Γ region, its live 

Γ Region 1 

Γ Region 4 

Γ Region 2 

Γ Region 3 

Γ Region 0 
Query Window 
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region is identified. Sparse live regions are recursively partitioned into smaller regions using 
Γ partitioning and live-region identification, until each of the smaller live regions has a den-
sity of at least δ, becoming a dense cell. The process produces a compact "signature'' of data 
consisting of the identified dense cells, represented by their low and high endpoints. 
 
The process of data space reduction is illustrated in Figure 7. Figure 7a, in which dark ovals 
represent areas populated by points, shows the Γ partition of the initial region LRU as well as 
the live regions within the resulting Γ regions. In Figures 7b and 7c, sparse live regions LR1 
and LR3 are partitioned further until all their enclosed dense cells are identified.  Whenever a 
high-density live region is detected (e.g., LR2 in Figure 7a), it is included into the set of dense 
cells. The resultant dense cells of this example are shown in Figure 7d. Then the adjacent 
dense cells are merged into larger clusters [Orl05]. 
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Figure 7. Illustration of GARDENHD clustering. 
 

Since optimal clustering is prohibitively expensive, all clustering algorithms are heuristic 
methods. However, GARDENHD is a high performance clustering method not only because of 
the heuristics it uses, but also because of the way it pursues the basic question that clustering 
methods must answer: where do data points lie in the space? Rather than looking where the 
points are, GARDENHD looks first for areas where they are not. After eliminating these areas, 
what is left gives a good idea where the points are [Orl05]. This is a sensible approach from 
the efficiency point of view because it is much easier to determine whether a region is empty, 
dense, or sparse than to look for points in any given neighborhood. 

 
By detecting clusters, all clustering methods perform implicit data space reduction. However, 
in addition to the fact that the reduction is neither effective nor scalable, it regularly does not 
preserve the essence of data in high-dimensional spaces. In contrast, the compact cluster rep-
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resentation of data produced by GARDENHD can preserve all essential properties of data, in-
cluding the locations, shapes, and densities of clusters. As a result, many data mining tasks 
can be performed on this representation alone. Therefore, GARDENHD can be used not only 
as a clustering algorithm, but also as a data-reduction method alternative to (or in conjunction 
with) dimensionality reduction, data compression, and data sampling. 

 
Experiments show that GARDENHD is not only an efficient and scalable clustering method, 
but that it effectively isolates densely populated areas in the space [Orl05]. Because of its 
efficiency, scalability, and the ability to effectively isolate areas with points, GARDENHD is 
appropriate for any intelligent system that supports advanced content-based retrieval. By pro-
viding a good insight into data distribution, it can enable a close-to-optimal assignment of 
data to the units of persistent storage. Moreover, the experiments suggest that GARDENHD 
can also be used as a general-purpose method for fast and scalable unsupervised learning. 

7    Data-Sensitive Gamma Partitioning 

The partitioning method, called DSGP (Data-Sensitive Gamma Partitioning), operates on the 
cluster representation of data produced by GARDENHD and generates a space partition in 
which well-separated clusters appear in different regions of the space. The algorithm runs in 
time equivalent to O(C2) comparisons of D-dimensional points, where C is the number of 
clusters detected by GARDENHD. 
 
Each data cluster is approximated by its minimum bounding hyper-rectangle (MBR), repre-
sented by the low and high endpoints. As in data-blind Γ partitioning, DSGP produces static 
Γ regions. However, the Γ regions are formed around spatial clusters. The number of resulting 
regions depends on the number of clusters. The objective is to store points of each disjoint 
cluster into a separate KDB-tree index. 

 
Figure 8 illustrates the steps of the data-sensitive space partitioning strategy. Figure 8a shows 
four clusters detected by GARDENHD. The DSGP procedure starts by sorting the clusters 
based on their high endpoints along each dimension. As a result, each dimension is associated 
with a sorted list of cluster indices. The procedure detects the gaps between clusters as fol-
lows. Going from the higher to lower coordinates along each dimension, the low endpoint of 
each cluster is compared with the high endpoint of the next cluster until a gap is found. A 
partitioning hyper-plane is drawn in the middle of a detected gap, perpendicular to the dimen-
sion with the minimum-containment region above the gap. By “minimum-containment re-
gion”, we mean a Γ region with the smallest number of clusters. The resulting space partition 
is stored in the Γ filter. The live regions bounding the points of each Γ region in the Γ filter 
are determined dynamically during initial and incremental data loading. 

  
In Figure 8a, Cluster 1 has been assigned to the first Γ region. Hence, it is eliminated from 
further consideration. The same procedure is repeated, and Cluster 2 is assigned to another 
partition along the same dimension (Figure 8b). In the next iteration, a gap is found along the 
second dimension (Figure 8c). The last cluster is assigned to the remaining Γ region. During 
data loading, the constructed KBD-tree indices perform implicit partitioning of the respective 
Γ regions into a collection of index regions, each of which bounds the points in an index page 
(Figure 8d). Since no point can fall outside the live region of the corresponding Γ region, the 
KDB-tree index regions are effectively bounded by the corresponding live regions. 



www.manaraa.com

 14

 

 
Figure 8. Steps of the DSGP space partitioning. 

 
 

If multiple clusters appear in the same Γ region, the DSGP procedure performs “slicing” of 
the Γ region, so that each slice of the Γ region contains only one cluster. The current slicing 
procedure requires a pair-wise comparison of the given cluster MBRs. It is also possible that 
no gap can be found during an iteration of this algorithm or during slicing of a Γ region. In 
such a case, DSGP performs a data-blind Γ partitioning of the space (region) in which the 
overlapping cluster MBRs appear.  
 
Figure 9 gives the DSGP partitioning algorithm. The live region LRU of the universe helps 
eliminate zero-extension dimensions. If only one cluster is detected, the space is statically 
partitioned as explained in Section 5. The indices of the clusters in the ClusterArray are 
stored in at most D lists. For each dimension i with non-zero extension, the cluster MBRs are 
sorted in the descending order of the i-th coordinates of their high endpoints. The algorithm 
traverses each list until a gap between two consecutive cluster MBRs is found and counts the 
number of clusters lying above the gap. A Γ region is extrapolated by partitioning the dimen-
sion for which the least number of clusters lie above the cut (gap). 
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  PROCEDURE DataSensitiveSpacePartitioning 
  INPUT 

LRU;            // Live region of the universe:   
ClusterArray: Clusters; 

OUTPUT 
Regions;                    // array of resulting Gamma regions. 

DECLATIONS 
NoClusters          // number of clusters in ClusterArray; 
ClustersIndex [D][NoClusters];     // cluster index lists for D dimensions 
NoOfEliminatedClust = NoClusters; 
SplitDimension = D;        // dimension along which a split occurred 

BEGIN  
Eliminate zero-length dimensions of LRU; 
if NoClusters = 1 then  
  staticGammaPartition (NoGenerators); // Default NoGenerators is currently 3 
else begin 

for all non-zero length dimensions do // O(D⋅C⋅logC), where C is no. clusters 
sortClustersInd (ClustersIndex);  // Sort clusters on high points of cluster MBRs 

while NoClusters > 1 do   // O(D⋅C2) worst case, average case is much better 
begin 
for all non-zero length dimensions do 

begin 
Traverse from high end, find the first gap (with the highest coordinate) be-
tween two consecutive clusters, and record the number of clusters NoC 
traversed above the gap; 
if NoC < NoOfEliminatedClust then 

Record the order number of the dimension in SplitDimension and set 
NoOfEliminatedClust := NoC; 

end 
     if NoOfEliminatedClust < NoClusters then  // Cut found for partitioning 
    Assign the partition point and draw a partition line along the dimension; 
     else begin 

findCutsforOverlap ();          // eliminate a cluster and find a cut 
if noCutAvailable () then staticGammaPartition (NoGenerators);  
return; 
end 

Update Regions array with new partitioned region formed; 
Associate SplitDimension with the new region;  

                Eliminate from the clusters array clusters before the gap;  // O(D⋅C) 
NoClusters � NoClusters – NoOfEliminatedClust; 
NoOfEliminatedClust = NoClusters; 
if NoClusters = 1 then 

Update Regions array with the remaining region; 
end 

end 
END 
 

Figure 9. DSGP algorithm.
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8     Similarity and Region Search 

Through the Γ filter representing the partition produced by either DSGP or data-blind Γ parti-
tioning, the data points are inserted into appropriate KDB-tree indices. As points are inserted, 
live regions of the Γ region and their slices are dynamically formed. Each inserted point ei-
ther grows a live region or falls inside it. For a point lying inside a live region, its distance to 
the geometric center of the live region is calculated. This point becomes a representative of 
the region if it is closer to the center of the live region than the previous representative, if any. 
Note that the dynamic computation of representatives takes place after the clustering and par-
titioning are performed on an early data sample. 
 
Figure 11 gives the algorithm for nearest-neighbor searching, called GammaNN (the k-NN 
algorithm is a simple variant of this) [Kul06]. Since the information about the space partition 
and live regions is maintained in memory, fast computations help eliminate from inspection a 
potentially large number of regions without any distance calculations. As noted earlier, fast 
in-memory computations are due to the way space partitioning is performed. Since the bulk 
of filtering is done in memory, a very good retrieval performance can be achieved.  
 
Figure 10 depicts the processes of similarity and region searching. The nearest neighbour 
search in Figure 3a uses a query hyper-sphere with the query point at the center and the dis-
tance to its closest region representative as the radius. In this example, the hyper-sphere inter-
sects two live regions whose clipped portions are searched. 

 

  
(a)                                       (b) 

Figure 10. k-Nearest Neighbor and Region Search. 
 

Once the live regions that overlap the query hyper-sphere or query rectangle (window) are 
determined, they are clipped against the hyper-sphere or the query window, respectively. The 
KDB-tree corresponding to an overlapping live region is then queried with the appropriate 
clip of the query window. In the case of a k-nearest neighbor searching, the query hyper-
sphere dynamically shrinks as the new nearest neighbors are detected. The points returned by 
the queried KDB-tree indices are compared with the query point to construct the resulting list 
of k-nearest neighbors. For a region search, illustrated in Figure 10b, the points returned by 
the KDB-tree indices represent the result set. 
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PROCEDURE NearestNeighborSearch 
INPUT 

 Q;       // query point:     
 NoRegions;    // number of Gamma regions   
 Regions;     // list of Gamma regions   

OUTPUT 
 Result.Point;   // nearest neighbor 
 Result.Distance;  // distance to the nearest neighbor 

DECLARATIONS 
 Slice;      // a slice of a region (region can have one or more slices) 
 Slice.LR;    // live region of the given slice 
 TempResult;    // contains a temporary NN and the distance to it 
 Distance := ∞, Dist; // temporary distances 

  Qclip;      // query window (clip) by which an index is searched 
BEGIN       // find closest representative and “construct” the sphere 
  for i:=1 to NoRegions do  

 if sphereIntersectsGammaRegion (Q, Distance, Region[i]) then 
  if Region[i].Cardinality > 0  // in a data-blind partition, region can be empty  
   for j:=1 to Region[i].NoSlices do 

if sphereIntersectsLiveRegion (Q, Distance, Region[i].Slice[j].LR) 
     begin 
     MarkSlice (Region[i].Slice[j]);  // mark slice for later inspection 
     if Dist := calculateDistance (Slice[j].Repr, Q) < Distance then 
      begin Slice := Region[i].Slice[j]; Distance := Dist; end 
     end 
Qclip := constructSearchWindow (Q, Distance, Slice.LR);  // construct query clip 
Result := searchIndex (i, Qclip);  // search index and return the temporary NN 
Distance := Result.Distance;  // examine points in other slices, shrinking the sphere 
for each other Slice in the list of marked slices do 
   if sphereIntersectsLiveRegion (Q, Distance, Slice.LR) then 
  begin     // since the sphere is shrinking, we had to test again for overlap  
  Qclip := constructSearchWindow (Q, Distance, Slice.LR); 
  TempResult :=searchIndex (i, Qclip);  
  if TempResult.Distance < Distance then  
   begin Distance := TempResult.Distance; Result := TempResult; end 
  end 

END  
Figure 11.  GammaNN algorithm for nearest-neighbor searching. 

 
 
Figure 12 gives the algorithm of region search. The input to the algorithm is the query win-
dow. First, the procedure determines which Γ regions intersect the query window. This is 
done by the procedure regionSearchFiltering of Figure 5.  If an intersecting region has cardi-
nality greater than zero, the respective KDB-tree is queried with the clipped portion of the 
query window that intersects the corresponding live region.  
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PROCEDURE RegionSearch 
INPUT 

 Qwindow;   // query window  
 NoRegions;   // number of regions integer 

OUTPUT 
  Result;      // list of points satisfying the query 

DECLARATIONS 
   Qclip;      // query window (clip) 
   Region;     // list of Gamma regions 
BEGIN      // find all regions intersecting the hyper-sphere 
   regionSearchFiltering (m, D, Qwindow, Gamma filter); // currently, m is set to 3 
   for i:=1 to NoRegions do 
    begin 
    if windowIntersectsGR (Qwindow, Region[i]) then 
     if Region[i].Cardinality > 0  // cardinality 0 is possible in data-blind partition  
      for j:=1 to Region[i].NoSlices do 

      if windowIntersectsLR (Qwindow, Region[i].Slice[j].LiveRegion) then 
        begin 

         Qclip := getQclip (Qwindow, Region[i].Slice[j].LiveRegion); 
       Result := Result ∪  searchIndex (i, Qclip);  

      end 
   end 

   return Result; 
END  

Figure 12. Region search algorithm. 
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9     Experimental Results 

The experiments were performed on simulated and real data on a PC configuration with a 3.6 
GHz CPU, 3GB RAM, and 280GB disk. In all structures, the page size was 8K bytes. We 
assumed a normalized D-dimensional space [0,1]D. Each coordinate of a point was packed in 
2 bytes. The GammaNN implementations with and without explicit clustering are referred to 
here as ‘data aware’ and ‘data blind’ algorithms, respectively. The static Γ partitioning of the 
data blind GammaNN was obtained assuming 3 generators, decided based on a number of 
experiments. In the synthetic data of up to 100 dimensions, the points are distributed across 
11 clusters—one in the center and 10 in random corners of the space. The real data is a 54-
dimensional forest cover type (“covtype”) set obtained from the UCI machine learning re-
pository (http://kdd.ics.uci.edu/databases/covertype/covertype.data.html). 
 

9.1  Structure building and data loading time 

Figure 13 gives the pre-processing time for two versions of GammaNN and the VA-File. For 
the data-blind algorithm, this time includes the time of space partitioning, I/O (reading the 
data), and the time for data loading (i.e., the construction of indices during insertion). The 
data-aware algorithm includes the clustering time in addition. Observe that the pre-processing 
time of this algorithm is heavily dominated by the construction of KDB-tree indices, whereas 
GARDENHD clustering is very fast.  
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Figure 13. Preprocessing time including the time for data loading. 
 

 
For the VA-File technique, the pre-processing time includes the time to generate the VA-File. 
Since this time is dominated by the calculation of approximation values and requires no in-
sertion of points into any data structure, a faster pre-processing for VA-File is expected. 
However, since the pre-processing time is usually amortized over a large number of queries, 
it is much less consequential than the search time. 
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9.2  Similarity Search 

Figure 14 shows the results on 100,000 synthetic data points as their dimensionality increases 
from 10 to 100. The data-aware algorithm is more than eight times faster than sequential scan 
and six times faster than the VA-File. The data-aware method and the VA-File incur almost 
the same number of page accesses to the data. However, this is because we counted only ac-
cesses to index or data pages, respectively. In other words, no page access was counted for 
the processing of the Γ filter or the VA-File, which favors the latter technique. If the VA-File 
were maintained on disk, the VA-File technique would incur many more page accesses. 
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Figure 14. Synthetic distribution with query distribution same as data, 10 NN. 

 
Figure 15. Real data with 100 queries selected from the real data file, 10 NN. 

 

 
 

Figure 16. Progress as the number of nearest neighbors increases on real data. 
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Figure 17. Time and average page accesses for incremental load on real data. 

 
Figure 15 shows that the data-aware algorithm is significantly faster than sequential scan and 
the VA-File. For this experiment, 580,900 points were loaded into each structure, and the 
remaining 100 points in the data set were used as query points. Also noteworthy is that the 
data-aware algorithm accesses only about 3% of all data points. 
 
Figure 16 shows the changes in the performance of different methods with respect to the in-
creasing value of k in k-NN searching. Except for the data-blind algorithm, all methods have 
a stable performance as k grows up to 100.  
 
Figure 17 shows the performance of the data-aware algorithm on incremental loading of the 
real data set. The clustering and space partitioning were performed on the first 100,000 points 
in the set, which were loaded into the structure. The results of 10-NN queries were recorded 
after subsequent incremental loads of 100,000 points. No re-clustering was performed after 
an incremental load. However, as described earlier, the live regions and their respective rep-
resentatives were dynamically modified during the incremental loads. The equivalent results 
of the same algorithm but without incremental loading (in Figure 17, referred to as “data 
aware, full load”), i.e. after clustering the entire subset of the data, are used as benchmarks.  
 
One can observe from Figure 17 that the data-aware GammaNN algorithm results in almost 
the same number of page accesses and the query execution times with or without incremental 
loading of data. This suggests that GammaNN reacts well to incremental loads. As in this 
case, in many practical environments, it will require no re-clustering of data even after many 
incremental loads. This is particularly important for scientific applications, which regularly 
obtain data through incremental loads.  

9.3  Region Search 

The region search algorithm was tested on the same two data sets: synthetic (center-corners) 
and the real covtype dataset (see Figures 18 and 19, respectively). The volume of generated 
queries was 1% of the total space. The timing results on the synthetic data set show that the 
data-blind and data-aware algorithms are much faster than than sequential scan. In terms of 
page accesses, data-sensitive approach has much better performance than the other two 
methods. The results on the covtype data set also reveal significantly better performance of 
the data-sensitive algorithm. 
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Figure 18. Time and average page access/query for 1% volume query. 
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Figure 19. Time and average page access per query for real data, 1% volume query. 

 

10     Discussion 

In this paper, we described a new system for storage and retrieval in high dimensionalities, 
called D*. The system employs explicit data clustering using a new density-based clustering 
method and a new data-sensitive space partitioning method in order to preserve the locality of 
data and reduce the volumes of clusters on storage. The application of a memory-based filter 
further improves the performance of similarity and region searching.  
 
The comparison of the data-sensitive and data-blind approach clearly highlights the impor-
tance of clustering data on storage for efficient similarity search. Our approach can support 
exact similarity search while accessing only a small fraction of data. The algorithm is very 
efficient in high dimensionalities and performs better than sequential scan and the VA-File 
technique. The performance remains good even after incremental loads of dynamically grow-
ing data sets without re-clustering.  
 
The high retrieval performance is due to the system’s adherence to the design principles of 
Section 3. By detecting dense areas in the space, the clustering facility determines the spatial 
proximity of data. Data-sensitive space partitioning enables a static pre-clustering of data on 
storage according to their spatial proximity. Storing the points of every region into a separate 
KDB-tree index enables a dynamic sub-clustering of data into index pages that correspond to 
relatively small and dense index regions, as required by the principle of clustering.  
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The application of the memory-resident filter is important for several reasons. The structure 
dynamically channels incoming data into the appropriate indices. It dramatically reduces the 
number of costly distance computations. With the dynamically maintained live regions, it 
also reduces the amount of searching over empty space, enabling a potentially significant 
reduction of search space before accessing the storage. With simple extensions, the system 
can facilitate various analytical tasks, such as data classification and data pre-processing. In 
our future work, we plan to incorporate some of these facilities.  
 
Perhaps in no other systems is the interplay between data storage and data mining more 
transparent than in scientific data grids. Their services like request planning and data replica-
tion are designed to increase the utilization of resources and the availability of data. However, 
the issues of data storage and organization have received relatively little consideration, even 
though they are critically important for these environments. This is because, when the size of 
a data collection exceeds certain limits, the capabilities of any given site in a distributed and 
replicated environment such as a data grid are determined not only by its computational and 
data resources but also by the way data is organized on storage. 
 
For example, a simple temporal ordering of data on storage is adequate for certain tasks that 
access data in their temporal order, e.g. full data replication. However, when the repository is 
queried on the intrinsic properties of data, the items that satisfy the query appear to be ran-
domly distributed across the storage. Therefore, a typical query must access many storage 
units, and only a small fraction of the retrieved data is relevant. In scientific data grids, this 
not only adversely affects the performance of analytical processing, but also has the effect of 
“blinding” the process of request planning. The latter process selects the execution site for the 
given program based in part on an estimate as to how much data will be accessed. 
 
Clustering data on storage can generate two orders of magnitude fewer accesses to the storage 
than the temporal layout of data. Unfortunately, clustering large data collections would re-
quire considerable computational and storage resources as well as periodic re-clustering of 
the entire repository. Sometimes, clustering data on a subset of dimensions is what the appli-
cation needs. However, in other situations, this can lead to suboptimal performance as the 
values of the remaining dimensions are disseminated across storage in a virtually random 
fashion. Further complicating the matter, the access patterns change over time. Therefore, any 
given storage organization is likely to become inappropriate at one time or another.  
 
To address these problems, data repository should be replicated. However, since different 
types of processing may require radically different storage organizations, the layout of data on 
different replica sites should be different. A dynamically clustered storage organization that 
can take the advantage of any number of dimensions, possibly all dimensions of data, would 
tremendously facilitate this goal.  
 
The technology described in this paper is designed with this goal in mind. It enables a mix of 
static and dynamic decisions designed to achieve full benefits of clustering data on storage at 
reasonable costs. As in the D* system, a static partition of the space can be used to organize 
data into a priori clusters corresponding to different regions in the space. For best results, the 
space partition can be derived after clustering an early sample of data. Even though the space 
partition is static, the process of sub-clustering is performed dynamically while the data is 
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arriving. Depending on the type of storage, each a priori cluster of data (data points in a re-
gion of the space partition) can be maintained in a separate multi-dimensional index on disk 
(as in the D* system) or a group of files on tertiary storage that are periodically re-clustered. 
Since this a posteriori clustering operates on a relatively small subset of the data, it can be 
performed in environments with limited resources. Our future plans include adaptations of 
the technology described in this paper for tertiary-storage environments. 
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